Molecular dynamics simulations of organoclays and polymer nanocomposites

被引:18
|
作者
Zeng, Q. H. [1 ,2 ]
Yu, A. B. [1 ,2 ]
机构
[1] Univ New S Wales, Ctr Simulat & Modeling Particulate Syst, Sydney, NSW 2052, Australia
[2] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
关键词
polymer nanocomposite; nanohybrid; organoclay; layered solid; molecular dynamics; computer simulation; interface structure;
D O I
10.1504/IJNT.2008.016918
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Understanding the interfacial interactions and structure is important to better design and manufacturing of nanoparticle-filled polymer nanocomposites. This paper presents our recent molecular dynamic studies on organically modified clays and polymer nanocomposites, including the swelling of clay minerals, molecular structure and dynamics in clay gallery, and interfacial interactions of polyurethane nanocomposites. The simulated results are in good agreement with the experimental measurements and observations. Quantitative analyses are made in atom density distribution, molecular tilt angle, order parameter, conformation, and mean squared displacement. Various layering structures (e.g., monolayer, bilayer, pseudo-trilayer and pseudo-quadrilayer) are observed in the gallery of organoclays, depending on the chain length of alkyl ammoniums and cationic exchangeable capacity of clays. In particular, the long alkyl chains do not lie flat within a single layer but interlace, and likely jump to the next layers. In polyurethane nanocomposite, the molecular interplays among clay surface, alkyl ammoniums and polyurethane chains lead to the absence of phase-separation of polyurethane, commonly observed in bulk polyurethane systems.
引用
收藏
页码:277 / 290
页数:14
相关论文
共 50 条
  • [1] Molecular dynamics simulations of polymer transport in nanocomposites
    Desai, T
    Keblinski, P
    Kumar, SK
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (13):
  • [2] Nanorod Diffusion in Polymer Nanocomposites by Molecular Dynamics Simulations
    Karatrantos, Argyrios
    Composto, Russell J.
    Winey, Karen I.
    Clarke, Nigel
    [J]. MACROMOLECULES, 2019, 52 (06) : 2513 - 2520
  • [3] Molecular dynamics simulations of the structure and the morphology of graphene/polymer nanocomposites
    Guryel, S.
    Walker, M.
    Geerlings, P.
    De Proft, F.
    Wilson, M. R.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (20) : 12959 - 12969
  • [4] Molecular Dynamics Simulations of Polymer Nanocomposites Welding: Interfacial Structure, Dynamics and Strength
    Chen, Ruisi
    Zhang, Zhiyu
    Zhou, Mengyu
    Han, Yue
    Li, Fanzhu
    Liu, Jun
    Zhang, Liqun
    [J]. MACROMOLECULAR RAPID COMMUNICATIONS, 2022, 43 (19)
  • [5] Graphene/Hyperbranched Polymer Nanocomposites: Insight from Molecular Dynamics Simulations
    Karatasos, Kostas
    [J]. MACROMOLECULES, 2014, 47 (24) : 8833 - 8845
  • [6] Formation of polymer nanocomposites with various organoclays
    Kim, Y
    White, JL
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2005, 96 (05) : 1888 - 1896
  • [7] Polymer nanocomposites: Molecular dynamics simulations of polystyrene and polystyrene-polyisoprene block copolymer nanocomposites
    Shah, D.
    Bitsanis, I.A.
    Natarajan, U.
    Hackett, E.
    Giannelis, E.P.
    [J]. Mater Res Soc Symp Proc, (1-11):
  • [8] Classical, Coarse-Grained, and Reactive Molecular Dynamics Simulations on Polymer Nanocomposites
    Inseok Jeon
    Taeyoung Yun
    Seunghwa Yang
    [J]. Multiscale Science and Engineering, 2022, 4 (4) : 161 - 178
  • [9] Polymer Nanocomposites from Organoclays: Structure and Properties
    Cui, Lili
    Paul, D. R.
    [J]. EUROFILLERS, 2011, 301 : 9 - 15
  • [10] Dynamic-mechanical properties of polymer nanocomposites from molecular dynamics simulations.
    Smith, GD
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U390 - U391