Dynamical onsager coefficients in one-dimensional ballistic transport

被引:0
|
作者
Greiner, A
Varani, L
Reggiani, L
Kuhn, T
机构
[1] UNIV MONTPELLIER 2,CTR ELECT & MICROOPTOELECT MONTPELLIER,CNRS UMR 5507,F-34095 MONTPELLIER,FRANCE
[2] UNIV LECCE,DIPARTIMENTO SCI MAT,IST NAZL FIS MAT,I-73100 LECCE,ITALY
[3] UNIV MUNSTER,INST THEORET PHYS 2,D-48149 MUNSTER,GERMANY
来源
PHYSICA STATUS SOLIDI B-BASIC RESEARCH | 1997年 / 204卷 / 01期
关键词
D O I
10.1002/1521-3951(199711)204:1<343::AID-PSSB343>3.0.CO;2-2
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Within a correlation-function (CF) formalism we present a theoretical analysis of the Kelvin-Onsager coefficients (KOC) relating generalized fluxes to the applied external forces for a carrier system in a one-dimensional ballistic structure. We consider a two terminal device with length l terminated by ideal contacts and investigate the transition from equilibrium to non-equilibrium conditions. The basis of the kinetic description are the transport equations for the Wigner function and the associated variance. The correlation functions of extensive variables (e.g. carrier number and energy) and the respective currents correspond to moments of the Wigner correlation function and the Fourier transform of the current correlation functions yield the dynamical Kelvin-Onsager coefficients.
引用
收藏
页码:343 / 345
页数:3
相关论文
共 50 条
  • [1] ONE-DIMENSIONAL BALLISTIC TRANSPORT OF ELECTRONS
    PEPPER, M
    SMITH, CG
    BROWN, RJ
    WHARAM, DA
    KELLY, MJ
    NEWBURY, R
    AHMED, H
    HASKO, DG
    PEACOCK, DC
    FROST, JEF
    RITCHIE, DA
    JONES, GAC
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1990, 5 (12) : 1185 - 1188
  • [2] ONE-DIMENSIONAL BALLISTIC TRANSPORT OF ELECTRONS
    STEVENS, KWH
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (34): : 5791 - 5808
  • [3] ONE-DIMENSIONAL TRANSPORT AND THE QUANTIZATION OF THE BALLISTIC RESISTANCE
    WHARAM, DA
    THORNTON, TJ
    NEWBURY, R
    PEPPER, M
    AHMED, H
    FROST, JEF
    HASKO, DG
    PEACOCK, DC
    RITCHIE, DA
    JONES, GAC
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (08): : L209 - L214
  • [4] Transport in a modulated one-dimensional ballistic channel
    Liang, CT
    Pepper, M
    Simmons, MY
    Smith, CG
    Kim, GH
    Ritchie, DA
    CHINESE JOURNAL OF PHYSICS, 2001, 39 (06) : 533 - 544
  • [5] BALLISTIC TRANSPORT IN A NOVEL ONE-DIMENSIONAL SUPERLATTICE
    ULLOA, SE
    CASTANO, E
    KIRCZENOW, G
    PHYSICAL REVIEW B, 1990, 41 (17): : 12350 - 12353
  • [6] Signatures of diffusion and ballistic transport in the stiffness, dynamical correlation functions, and statistics of one-dimensional systems
    Mukerjee, Subroto
    Shastry, B. Sriram
    PHYSICAL REVIEW B, 2008, 77 (24)
  • [7] Interference phenomena and ballistic transport in a one-dimensional ring
    Moskalets, MV
    LOW TEMPERATURE PHYSICS, 1997, 23 (10) : 824 - 829
  • [8] Ballistic transport in one-dimensional bilayer hole systems
    Danneau, R.
    Clarke, W. R.
    Klochan, O.
    Ho, L. H.
    Micolich, A. P.
    Hamilton, A. R.
    Simmons, M. Y.
    Pepper, M.
    Ritchie, D. A.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 34 (1-2): : 550 - 552
  • [9] Ballistic transport in induced one-dimensional hole systems
    Klochan, O.
    Clarke, W. R.
    Danneau, R.
    Micolich, A. P.
    Ho, L. H.
    Hamilton, A. R.
    Muraki, K.
    Hirayama, Y.
    APPLIED PHYSICS LETTERS, 2006, 89 (09)
  • [10] One-dimensional ballistic transport with FLAPW Wannier functions
    Hardrat, Bjoern
    Wang, Neng-Ping
    Freimuth, Frank
    Mokrousov, Yuriy
    Heinze, Stefan
    PHYSICAL REVIEW B, 2012, 85 (24)