Offshore wind farm layout optimization regarding wake effects and electrical losses

被引:44
|
作者
Amaral, Luis [1 ]
Castro, Rui [2 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal
[2] Univ Lisbon, INESC, ID IST, Lisbon, Portugal
关键词
Offshore wind energy; Electrical losses; Wake effect; Genetic Algorithm; Particle Swarm Optimization; GENETIC ALGORITHM; PARTICLE SWARM; TURBINES; DESIGN; ENERGY; PLACEMENT; EUROPE; SYSTEM; SPACE;
D O I
10.1016/j.engappai.2017.01.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A major development of the offshore wind energy market is being witnessed. Since the implicated costs are considerably high, it is extremely important to ensure that the energy production is maximum, so that the costs per energy unit are minimized. Thus, the turbines should be strategically positioned to extract as much energy as possible from the wind, considering wake effect losses, as well as internal grid electrical losses. In order to avoid turbines to be placed in unrealistic positions, they should be distributed according to a grid of rectangular shaped cells; each of these is divided in multiple sub-cells. The problem of finding the turbines optimal position among the pre-defined sub-cells so that maximum annual energy is produced could be addressed using a deterministic approach. However, the problem becomes unfeasible when the number of turbines and/or the number of sub-cells increase. To overcome this difficulty, optimization techniques should be used. Genetic Algorithm and Particle Swarm Optimization are approached in this paper. This paper deals with the wind park layout optimization problem. A methodology to position the turbines inside a wind park so that the annual energy production is maximum is proposed. The results proved that the meta-heuristic method is much more CPU time efficient in providing the maximum annual year production as compared to the traditional deterministic approach.
引用
收藏
页码:26 / 34
页数:9
相关论文
共 50 条
  • [1] Offshore wind farm layout optimization considering wake effects
    Dabbabi, Asma
    Bourguet, Salvy
    Loisel, Rodica
    Machmoum, Mohamed
    [J]. 2020 22ND EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE'20 ECCE EUROPE), 2020,
  • [2] Offshore wind farm electrical cable layout optimization
    Pillai, A. C.
    Chick, J.
    Johanning, L.
    Khorasanchi, M.
    de Laleu, V.
    [J]. ENGINEERING OPTIMIZATION, 2015, 47 (12) : 1689 - 1708
  • [3] Offshore Wind Farm Layout Optimisation Considering Wake Effect and Power Losses
    Baptista, Jose
    Jesus, Beatriz
    Cerveira, Adelaide
    Pires, Eduardo J. Solteiro
    [J]. SUSTAINABILITY, 2023, 15 (13)
  • [4] OPTIMIZATION OF LARGE OFFSHORE WIND FARM LAYOUT CONSIDERING RELIABILITY AND WAKE EFFECT
    Li, Xiangyu
    Dao, Cuong D.
    Kazemtabrizi, Behzad
    Crabtree, Christopher J.
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 12, 2020,
  • [5] Algorithms for Offshore Wind Farm Layout Optimization
    Elkinton, Christopher
    Manwell, James
    McGowan, Jon
    [J]. WIND ENGINEERING, 2008, 32 (01) : 67 - 84
  • [6] A review of offshore wind farm layout optimization and electrical system design methods
    Hou, Peng
    Zhu, Jiangsheng
    Ma, Kuichao
    Yang, Guangya
    Hu, Weihao
    Chen, Zhe
    [J]. JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2019, 7 (05) : 975 - 986
  • [7] A review of offshore wind farm layout optimization and electrical system design methods
    Peng HOU
    Jiangsheng ZHU
    Kuichao MA
    Guangya YANG
    Weihao HU
    Zhe CHEN
    [J]. Journal of Modern Power Systems and Clean Energy, 2019, 7 (05) : 975 - 986
  • [8] The impact of wake models on wind farm layout optimization
    Schmidt, Jonas
    Stoevesandt, Bernhard
    [J]. WAKE CONFERENCE 2015, 2015, 625
  • [9] Wind farm layout optimization for wake effect uniformity
    Yang, Kyoungboo
    Kwak, Gyeongil
    Cho, Kyungho
    Huh, Jongchul
    [J]. ENERGY, 2019, 183 : 983 - 995
  • [10] Application of an offshore wind farm layout optimization methodology at Middelgrunden wind farm
    Pillai, Ajit C.
    Chick, John
    Khorasanchi, Mandi
    Barbouchi, Sami
    Johanning, Lars
    [J]. OCEAN ENGINEERING, 2017, 139 : 287 - 297