Phase conditions for Schur polynomials

被引:0
|
作者
Keel, LH [1 ]
Bhattacharyya, SP
机构
[1] Tennessee State Univ, Ctr Excellence Informat Syst, Nashville, TN 37203 USA
[2] Texas A&M Univ, Dept Elect Engn, College Stn, TX 77843 USA
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS | 2002年 / 49卷 / 10期
关键词
phase monotonicity; rate of change of phase; Schur polynomial;
D O I
10.1109/TCSI.2002.803244
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The rate of change of phase of a real or complex Schur polynomial, evaluated along the unit circle traversed counterclockwise, is strictly positive. For polynomials with real coefficients, this bound can be tightened. These and some other fundamental bounds on the rate of change of phase are derived here, using the Tchebyshev representation of the image of a real polynomial evaluated on the unit circle.
引用
收藏
页码:1509 / 1513
页数:5
相关论文
共 50 条
  • [1] Conditions for the Schur stability of segments of polynomials of the same degree
    Baltazar Aguirre-Hernández
    Ricardo García-Sosa
    Horacio Leyva
    Julio Solís-Daun
    Francisco A. Carrillo
    Boletín de la Sociedad Matemática Mexicana, 2015, 21 (2) : 309 - 321
  • [2] Necessary conditions for Schur-stability of interval polynomials
    Greiner, R
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (05) : 740 - 744
  • [3] Relaxed monotonic conditions for Schur stability of real polynomials
    Nguyen, Thang V.
    Mori, Yoshihiro
    Mori, Takehiro
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2007, E90A (10) : 2326 - 2328
  • [4] Conditions for the Schur stability of segments of polynomials of the same degree
    Aguirre-Hernandez, Baltazar
    Garcia-Sosa, Ricardo
    Leyva, Horacio
    Solis-Daun, Julio
    Carrillo, Francisco A.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2015, 21 (02): : 309 - 321
  • [5] ARGUMENT CONDITIONS FOR HURWITZ AND SCHUR POLYNOMIALS FROM NETWORK THEORY
    BOSE, NK
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (02) : 345 - 346
  • [6] CONNECTIONS BETWEEN REAL SCHUR POLYNOMIALS AND HALF ORDER COMPLEX SCHUR POLYNOMIALS
    ANDERSON, BDO
    DASGUPTA, S
    SYSTEMS & CONTROL LETTERS, 1992, 18 (03) : 237 - 244
  • [7] Exceptional orthogonal polynomials and generalized Schur polynomials
    Grandati, Yves
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (08)
  • [8] Schur polynomials and weighted Grassmannians
    Abe, Hiraku
    Matsumura, Tomoo
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (03) : 875 - 892
  • [9] ON SEMIRING COMPLEXITY OF SCHUR POLYNOMIALS
    Fomin, Sergey
    Grigoriev, Dima
    Nogneng, Dorian
    Schost, Eric
    COMPUTATIONAL COMPLEXITY, 2018, 27 (04) : 595 - 616
  • [10] On semiring complexity of Schur polynomials
    Sergey Fomin
    Dima Grigoriev
    Dorian Nogneng
    Éric Schost
    computational complexity, 2018, 27 : 595 - 616