Modeling and Estimation of Lithium-ion Battery State of Charge Using Intelligent Techniques

被引:6
|
作者
Hemavathi, S. [1 ]
机构
[1] Cent Electrochem Res Inst, Battery Div, CSIR Madras Complex, Chennai, Tamil Nadu, India
关键词
Feedforward neural network; Levenberg-Marquardt; Li-ion battery; Recurrent neural network; Scaled conjugate gradient; State of charge; ARTIFICIAL NEURAL-NETWORK; OF-CHARGE;
D O I
10.1007/978-981-15-0313-9_12
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Li-ion battery is an energy storage system in consumer and industrial applications. Because of their cell and pack level protection, the Li-ion battery requires a battery management system. The important function of the battery management system is to monitor the Li-ion battery state of charge (SOC), to indicate the charge level of the battery. In this research article, efficient intelligent techniques-based SOC estimation algorithm is presented. The proposed techniques are feedfor-ward neural network and layer recurrent neural network with a Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt (LM) training methods. The proposed estimators are applied on 18650 single-cell Li-ion battery to test the performance of the neural networks to estimate the SOC. A real-time experiment carried out on 18650 single-cell Li-ion battery, and experimental results and characteristics are analyzed. The battery cell voltage and current obtained from experimental results are used as the input parameter to proposed networks and battery SOC as the output. The proposed estimation is carried out in the MATLAB. The simulation results show that layer recurrent neural network with LM training method has the best performance to estimate the Li-ion battery SOC in terms of accurate measurement with actual SOC and highest convergence speed.
引用
收藏
页码:157 / 172
页数:16
相关论文
共 50 条
  • [1] Modeling and state of charge estimation of lithium-ion battery
    Xi-Kun Chen
    Dong Sun
    Advances in Manufacturing, 2015, 3 : 202 - 211
  • [2] Modeling and state of charge estimation of lithium-ion battery
    Chen, Xi-Kun
    Sun, Dong
    ADVANCES IN MANUFACTURING, 2015, 3 (03) : 202 - 211
  • [3] Modeling and state of charge estimation of lithium-ion battery
    Xi-Kun Chen
    Dong Sun
    AdvancesinManufacturing, 2015, 3 (03) : 202 - 211
  • [4] Lithium-ion Battery Modeling and State of Charge Estimation
    Wei Xiong
    Mo, Yimin
    Feng Zhang
    INTEGRATED FERROELECTRICS, 2019, 200 (01) : 59 - 72
  • [5] Research on Modeling and State of Charge Estimation for Lithium-ion Battery
    Sun, Dong
    Chen, Xikun
    Ruan, Yi
    2014 INTERNATIONAL ELECTRONICS AND APPLICATION CONFERENCE AND EXPOSITION (PEAC), 2014, : 1401 - 1406
  • [6] Advanced Intelligent approach for state of charge estimation of lithium-ion battery
    Kumar, Deepak
    Rizwan, M.
    Panwar, Amrish K.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (04) : 10661 - 10681
  • [7] Transfer Learning Techniques for the Lithium-Ion Battery State of Charge Estimation
    Eleftheriadis, Panagiotis
    Giazitzis, Spyridon
    Leva, Sonia
    Ogliari, Emanuele
    IEEE ACCESS, 2024, 12 : 993 - 1004
  • [8] Battery cell modeling and online estimation of the state of charge of a lithium-ion battery
    Tsai, I-Haur
    Yu, Kuan-Hsun
    Tseng, Alexander
    Yen, Jia-Yush
    Fu, Tseng-Ti
    Huang, Evan
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2018, 41 (05) : 412 - 418
  • [9] Estimation of Lithium-ion Battery State of Charge
    Zhang Di
    Ma Yan
    Bai Qing-Wen
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 6256 - 6260
  • [10] Lithium-ion battery state of charge estimation using a fractional battery model
    Francisco, J. M.
    Sabatier, J.
    Lavigne, L.
    Guillemard, F.
    Moze, M.
    Tari, M.
    Merveillaut, M.
    Noury, A.
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,