Strain-controlled band engineering and self-doping in ultrathin LaNiO3 films

被引:35
|
作者
Moon, E. J. [1 ]
Rondinelli, J. M. [2 ]
Prasai, N. [3 ]
Gray, B. A. [1 ]
Kareev, M. [1 ]
Chakhalian, J. [1 ]
Cohn, J. L. [3 ]
机构
[1] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA
[2] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[3] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA
来源
PHYSICAL REVIEW B | 2012年 / 85卷 / 12期
基金
美国国家科学基金会;
关键词
THERMOELECTRIC-POWER; ELECTRONIC-STRUCTURE; SCATTERING RATE; SINGLE-LAYER; OXIDES; SUPERCONDUCTORS; THERMOPOWER; TRANSITIONS; DEPENDENCE; TRANSPORT;
D O I
10.1103/PhysRevB.85.121106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on a systematic study of the temperature-dependent Hall coefficient and thermoelectric power in ultrathin metallic LaNiO3 films that reveal a strain-induced, self-doping carrier transition that is inaccessible in the bulk. As the film strain varies from compressive to tensile at fixed composition and stoichiometry, the evolution of the transport coefficients is strikingly similar to those of bulk hole-doped superconducting cuprates with varying doping level. Density functional calculations reveal that the strain-induced changes in transport properties arise from changes in the low-energy electronic band structure that induce self-doping, a transfer of charge between O p and Ni d states. The results suggest that thin-film epitaxy can serve as a means to vary the charge-carrier concentration in other (negative) charge-transfer gap transition-metal oxides without resorting to chemical substitution.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Strain-Controlled Epitaxial Stabilization in Ultrathin LaNiO3 Films Grown by Pulsed Laser Deposition
    Moon, E. J.
    Gray, B. A.
    Pimpinelli, A.
    Kareev, M.
    Meyers, D.
    Chakhalian, J.
    [J]. CRYSTAL GROWTH & DESIGN, 2013, 13 (06) : 2256 - 2259
  • [2] Strain-Controlled Transport Mechanism in Strongly Correlated LaNiO3
    Misra, D.
    Kundu, T. K.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (01) : 150 - 157
  • [3] Strain-Controlled Transport Mechanism in Strongly Correlated LaNiO3
    D. Misra
    T. K. Kundu
    [J]. Journal of Electronic Materials, 2017, 46 : 150 - 157
  • [4] Parameter transferability, self-doping, and metallicity in LaNiO3/LaMnO3 superlattices
    Lopez-Bezanilla, Alejandro
    Arsenault, Louis-Francois
    Bhattacharya, Anand
    Littlewood, Peter B.
    Millis, Andrew J.
    [J]. PHYSICAL REVIEW B, 2019, 99 (03)
  • [5] Vibrational properties of LaNiO3 films in the ultrathin regime
    Schober, Alexander
    Fowlie, Jennifer
    Guennou, Mael
    Weber, Mads C.
    Zhao, Hongjian
    Iniguez, Jorge
    Gibert, Marta
    Triscone, Jean-Marc
    Kreisel, Jens
    [J]. APL MATERIALS, 2020, 8 (06):
  • [6] Conductivity enhancement of ultrathin LaNiO3 films in superlattices
    Son, Junwoo
    LeBeau, James M.
    Allen, S. James
    Stemmer, Susanne
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (20)
  • [7] Critical thickness in LaNiO3 ultrathin films: the influence of underlayer
    Bai, Yuhang
    Li, Chen
    Wu, Di
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (21) : 16239 - 16243
  • [8] Critical thickness in LaNiO3 ultrathin films: the influence of underlayer
    Yuhang Bai
    Chen Li
    Di Wu
    [J]. Journal of Materials Science: Materials in Electronics, 2017, 28 : 16239 - 16243
  • [9] Thickness-dependent electronic structure in ultrathin LaNiO3 films under tensile strain
    Yoo, Hyang Keun
    Hyun, Seung Ill
    Chang, Young Jun
    Moreschini, Luca
    Sohn, Chang Hee
    Kim, Hyeong-Do
    Bostwick, Aaron
    Rotenberg, Eli
    Shim, Ji Hoon
    Noh, Tae Won
    [J]. PHYSICAL REVIEW B, 2016, 93 (03)
  • [10] Strain-controlled electrical transport performance of epitaxial LaNiO3 films with Sr3Al2O6 buffer layer
    Wang, Baohua
    Wu, Yangqing
    Chen, Xin
    Han, Qiaoling
    Chen, Yang
    Wei, Haoming
    Cao, Bingqiang
    [J]. CHEMICAL PHYSICS LETTERS, 2022, 787