Predicting wood thermal conductivity using artificial neural networks

被引:0
|
作者
Avramidis, S [1 ]
Iliadis, L
机构
[1] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada
[2] Democritus Univ Thrace, Dept Forestry & Management Environm & Nat Resourc, Orestiada 68200, Greece
来源
WOOD AND FIBER SCIENCE | 2005年 / 37卷 / 04期
关键词
artificial neural networks; density; moisture content; temperature; thermal conductivity coefficient; wood;
D O I
暂无
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
An artificial neural network model that estimates wood thermal conductivity under a wide range of conditions of moisture content, temperature and apparent density was developed and tested with literature obtained experimental data. The optimal network was determined to consist of an input layer, three hidden layers, and one output layer following the feed forward network structure and more specifically the back-propagation algorithm. Each of the three hidden layers of the ANN consisted of eleven neurons. The Neural works software package was used for the determination of the network structure and architecture, and for the training and testing phase. The evaluation produced an R 2 value equal to 0.9994 and a RMS Error equal to 0.0123, thus proving that the developed ANN model is a reliable approach with powerful predictive capacity towards the estimation of thermal conductivity and it can be used by researchers under a wide range of conditions.
引用
收藏
页码:682 / 690
页数:9
相关论文
共 50 条
  • [1] PREDICTING THERMAL CONDUCTIVITY OF STEELS USING ARTIFICIAL NEURAL NETWORKS
    Zmak, Irena
    Filetin, Tomislav
    [J]. TRANSACTIONS OF FAMENA, 2010, 34 (03) : 11 - 20
  • [2] Predicting the effective thermal conductivity of dry granular media using artificial neural networks
    Grabarczyk, Marcin
    Furmanski, Piotr
    [J]. JOURNAL OF POWER TECHNOLOGIES, 2013, 93 (02): : 59 - 66
  • [3] Forecasting the thermal conductivity of a nanofluid using artificial neural networks
    Rostami, Sara
    Kalbasi, Rasool
    Sina, Nima
    Goldanlou, Aysan Shahsavar
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 145 (04) : 2095 - 2104
  • [4] Forecasting the thermal conductivity of a nanofluid using artificial neural networks
    Sara Rostami
    Rasool Kalbasi
    Nima Sina
    Aysan Shahsavar Goldanlou
    [J]. Journal of Thermal Analysis and Calorimetry, 2021, 145 : 2095 - 2104
  • [5] Correlating of Thermal Conductivity of monatomic Gases Using Artificial Neural Networks
    Melzi, Naima
    Khaouane, Latifa
    Hanini, Salah
    Laidi, Maamar
    [J]. PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON APPLIED SMART SYSTEMS (ICASS), 2018,
  • [6] Estimation of thermal conductivity of pure gases by using artificial neural networks
    Eslamloueyan, R.
    Khademi, M. H.
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2009, 48 (06) : 1094 - 1101
  • [7] Predicting the thermal behaviour of engine oils using artificial neural networks
    Abou-Ziyan, H. Z.
    Mahmoud, M. A.
    Abou Zaid, M. A.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2009, 223 (J1) : 115 - 124
  • [8] Neural networks for predicting thermal conductivity of bakery products
    Sablani, SS
    Baik, OD
    Marcotte, M
    [J]. JOURNAL OF FOOD ENGINEERING, 2002, 52 (03) : 299 - 304
  • [9] Modeling of Thermal Conductivity of Concrete with Vermiculite Using by Artificial Neural Networks Approaches
    Gencel, O.
    Koksal, F.
    Sahin, M.
    Durgun, M. Y.
    Lobland, H. E. Hagg
    Brostow, W.
    [J]. EXPERIMENTAL HEAT TRANSFER, 2013, 26 (04) : 360 - 383
  • [10] Modeling Thermal Conductivity of Iranian Flat Bread Using Artificial Neural Networks
    Omid, M.
    Akram, A.
    Golmohammadi, A.
    [J]. INTERNATIONAL JOURNAL OF FOOD PROPERTIES, 2011, 14 (04) : 708 - 720