Graph-based Semi-supervised Learning: Realizing Pointwise Smoothness Probabilistically

被引:0
|
作者
Fang, Yuan [1 ,2 ]
Chang, Kevin Chen-Chuan [1 ,2 ]
Lauw, Hady W. [3 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Adv Digital Sci Ctr, Singapore, Singapore
[3] Singapore Management Univ, Singapore, Singapore
关键词
CLASSIFICATION; BOUNDS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As the central notion in semi-supervised learning, smoothness is often realized on a graph representation of the data. In this paper, we study two complementary dimensions of smoothness: its pointwise nature and probabilistic modeling. While no existing graph-based work exploits them in conjunction, we encompass both in a novel framework of Probabilistic Graph-based Pointwise Smoothness (PGP), building upon two foundational models of data closeness and label coupling. This new form of smoothness axiomatizes a set of probability constraints, which ultimately enables class prediction. Theoretically, we provide an error and robustness analysis of POP. Empirically, we conduct extensive experiments to show the advantages of POP.
引用
收藏
页码:406 / 414
页数:9
相关论文
共 50 条
  • [1] Graph-based semi-supervised learning
    Zhang, Changshui
    Wang, Fei
    [J]. ARTIFICIAL LIFE AND ROBOTICS, 2009, 14 (04) : 445 - 448
  • [2] Graph-based semi-supervised learning
    Changshui Zhang
    Fei Wang
    [J]. Artificial Life and Robotics, 2009, 14 (4) : 445 - 448
  • [3] Graph-based semi-supervised learning
    Subramanya, Amarnag
    Talukdar, Partha Pratim
    [J]. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2014, 29 : 1 - 126
  • [4] Fairness in graph-based semi-supervised learning
    Tao Zhang
    Tianqing Zhu
    Mengde Han
    Fengwen Chen
    Jing Li
    Wanlei Zhou
    Philip S Yu
    [J]. Knowledge and Information Systems, 2023, 65 : 543 - 570
  • [5] On Consistency of Graph-based Semi-supervised Learning
    Du, Chengan
    Zhao, Yunpeng
    Wang, Feng
    [J]. 2019 39TH IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2019), 2019, : 483 - 491
  • [6] Fairness in graph-based semi-supervised learning
    Zhang, Tao
    Zhu, Tianqing
    Han, Mengde
    Chen, Fengwen
    Li, Jing
    Zhou, Wanlei
    Yu, Philip S.
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (02) : 543 - 570
  • [7] Graph-based semi-supervised learning: A review
    Chong, Yanwen
    Ding, Yun
    Yan, Qing
    Pan, Shaoming
    [J]. NEUROCOMPUTING, 2020, 408 (408) : 216 - 230
  • [8] Fractional Graph-based Semi-Supervised Learning
    de Nigris, S.
    Bautista, E.
    Abry, P.
    Avrachenkov, K.
    Gonclaves, P.
    [J]. 2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 356 - 360
  • [9] Interactive Graph Construction for Graph-Based Semi-Supervised Learning
    Chen, Changjian
    Wang, Zhaowei
    Wu, Jing
    Wang, Xiting
    Guo, Lan-Zhe
    Li, Yu-Feng
    Liu, Shixia
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (09) : 3701 - 3716
  • [10] Graph-based semi-supervised learning with multiple labels
    Zha, Zheng-Jun
    Mei, Tao
    Wang, Jingdong
    Wang, Zengfu
    Hua, Xian-Sheng
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2009, 20 (02) : 97 - 103