Effects of temperature and transport conditions on calcite growth in the presence of Mg2+:: Implications for paleothermometry

被引:79
|
作者
Wasylenki, LE
Dove, PM [1 ]
De Yoreo, JJ
机构
[1] Virginia Polytech Inst & State Univ, Dept Geosci, Blacksburg, VA 24061 USA
[2] Lawrence Livermore Natl Lab, Dept Chem & Mat Sci, Livermore, CA 94551 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.gca.2005.04.006
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This study links direct measurement of Mg-calcite growth kinetics with high-spatial-resolution analysis of Mg contents in experimental crystals, with particular attention to the effects of temperature on growth rate and reactant transport conditions on Mg distribution. In contrast to previous experiments on Mg partitioning into calcite, here the layer-growth mechanism was observed in situ and step speeds precisely measured with fluid cell atomic force microscopy over a range of temperatures, degrees of supersaturation, and solution Mg concentrations. Data collected from 15 degrees to 30 degrees C yield an activation energy for calcite precipitation of 33 kJ/moI for solutions with [Mg] = 5 X 10(-5) molal. Electron microprobe analyses of large hillocks grown at corresponding conditions demonstrate that Mg has a strong preference for incorporation at negative (acute) step edges, rather than at positive (obtuse) edges when growth rate is limited by surface reactions. This preference is reversed when growth is instead limited by diffusion of reactants through a boundary layer at the mineral-solution interface. These findings show that temperature is not the only strong control on the extent of Mg incorporation and distribution in calcite; transport conditions during mineral growth may also be a first-order factor governing the compositions of natural calcite samples. Copyright (c) 2005 Elsevier Ltd.
引用
收藏
页码:4227 / 4236
页数:10
相关论文
共 50 条
  • [1] Effects of carboxylic acids on calcite formation in the presence of Mg2+ ions
    Wada, N
    Yamashita, K
    Umegaki, T
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1999, 212 (02) : 357 - 364
  • [2] The role of Mg2+ as an impurity in calcite growth
    Davis, KJ
    Dove, PM
    De Yoreo, JJ
    [J]. SCIENCE, 2000, 290 (5494) : 1134 - 1137
  • [3] Effect of Mg2+ on the kinetics of calcite crystal growth
    Lin, Yi-Pin
    Singer, Philip C.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2009, 312 (01) : 136 - 140
  • [4] Inhibition of Calcite Growth: Combined Effects of Mg2+ and SO42-
    Nielsen, M. R.
    Sand, K. K.
    Rodriguez-Blanco, J. D.
    Bovet, N.
    Generosi, J.
    Dalby, K. N.
    Stipp, S. L. S.
    [J]. CRYSTAL GROWTH & DESIGN, 2016, 16 (11) : 6199 - 6207
  • [5] Calcite Wettability in the Presence of Dissolved Mg2+ and SO42-
    Generosi, J.
    Ceccato, M.
    Andersson, M. P.
    Hassenkam, T.
    Dobberschutz, S.
    Bovet, N.
    Stipp, S. L. S.
    [J]. ENERGY & FUELS, 2017, 31 (01) : 1005 - 1014
  • [6] Effects of temperature and transport conditions on Magnesium contents in calcite
    Wasylenki, LE
    Dove, PM
    De Yoreo, JJ
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2005, 69 (10) : A121 - A121
  • [7] New insights into Mn2+ and Mg2+ inhibition of calcite growth
    V. Mills, Jennifer
    Barnhart, Holly A.
    DePaolo, Donald J.
    Lammers, Laura N.
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2022, 334 : 338 - 367
  • [8] Influence of Mg2+ on the kinetics of calcite precipitation and calcite crystal morphology
    Zhang, YP
    Dawe, RA
    [J]. CHEMICAL GEOLOGY, 2000, 163 (1-4) : 129 - 138
  • [9] Mg2+ transport in the kidney
    Satoh, J
    Romero, MF
    [J]. BIOMETALS, 2002, 15 (03) : 285 - 295
  • [10] Mg2+ transport in the kidney
    Jun-ichi Satoh
    Michael F. Romero
    [J]. Biometals, 2002, 15 : 285 - 296