Shell finite element formulation for geometrically nonlinear analysis of curved thin-walled pipes

被引:6
|
作者
Attia, Saher [1 ,2 ]
Mohareb, Magdi [3 ]
Martens, Michael [4 ]
Ghodsi, Nader Yoosef [5 ]
Li, Yong [2 ]
Adeeb, Samer [2 ]
机构
[1] Cairo Univ, Dept Struct Engn, Giza 12613, Egypt
[2] Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB T6G 1H9, Canada
[3] Univ Ottawa, Dept Civil Engn, Ottawa, ON K1N 6N5, Canada
[4] TC Energy Ltd, Calgary, AB T2P 5H1, Canada
[5] Enbridge Pipelines Inc, Edmonton, AB T5J 0H3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Toroidal shells; Geometrically nonlinear finite element; First Piola-Kirchhoff stress tensor; Virtual work principle; Eigenvalue analyses; Elbows; ELBOW ELEMENT;
D O I
10.1016/j.tws.2022.108971
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A family of shell finite elements is developed for the geometrically nonlinear analysis of pipe bends. The constitutive description follows the Saint-Venant-Kirchhoff model. The first Piola-Kirchhoff stress and the conjugate gradient of the virtual displacement fields are adopted within the framework of the virtual work principle. Three.. 1 continuous schemes are used to interpolate the displacement fields in the longitudinal direction while Fourier series are used for circumferential interpolation. Eigenvalue analyses are conducted to assess the ability of the elements to represent rigid body motion. Comparisons with other shell and elbow models demonstrate the accuracy and versatility of the formulation.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Shell finite element formulation for geometrically nonlinear analysis of straight thin-walled pipes
    Attia, Saher
    Mohareb, Magdi
    Martens, Michael
    Ghodsi, Nader Yoosef
    Li, Yong
    Adeeb, Samer
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2021, 137
  • [2] Shell analysis of thin-walled pipes. Part II - Finite element formulation
    Weicker, Kevin
    Salahifar, Raydin
    Mohareb, Magdi
    [J]. INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2010, 87 (07) : 414 - 423
  • [3] A FINITE ELEMENT FORMULATION FOR THE ANALYSIS OF HORIZONTALLY CURVED THIN-WALLED BEAMS
    Afnani, Ashkan
    Niki, Vida
    Erkmen, R. Emre
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2015, VOL 9, 2016,
  • [4] Geometrically nonlinear formulation of Generalized Beam Theory for the analysis of thin-walled circular pipes
    Habtemariam, Abinet K.
    Bianco, Marcelo J.
    Koenke, Carsten
    Zabel, Volkmar
    [J]. THIN-WALLED STRUCTURES, 2022, 173
  • [5] Degenerated shell element for geometrically nonlinear analysis of thin-walled piezoelectric active structures
    Marinkovic, D.
    Koeppe, H.
    Gabbert, U.
    [J]. SMART MATERIALS & STRUCTURES, 2008, 17 (01):
  • [6] Refined geometrically nonlinear formulation of a thin-shell triangular finite element
    V. V. Kuznetsov
    S. V. Levyakov
    [J]. Journal of Applied Mechanics and Technical Physics, 2007, 48 : 755 - 765
  • [7] Refined geometrically nonlinear formulation of a thin-shell triangular finite element
    Kuznetsov, V. V.
    Levyakov, S. V.
    [J]. JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2007, 48 (05) : 755 - 765
  • [8] THIN-WALLED CURVED BEAM FINITE-ELEMENT
    CHAUDHURI, SK
    SHORE, S
    [J]. JOURNAL OF THE ENGINEERING MECHANICS DIVISION-ASCE, 1977, 103 (05): : 921 - 937
  • [9] A geometrically exact nonlinear finite element for composite closed section thin-walled beams
    Martin Saravia, C.
    Machado, Sebastian P.
    Cortinez, Victor H.
    [J]. COMPUTERS & STRUCTURES, 2011, 89 (23-24) : 2337 - 2351
  • [10] GEOMETRICALLY AND MATERIALLY NONLINEAR FINITE-ELEMENT ANALYSIS OF THIN-WALLED FRAMES - NUMERICAL-STUDIES
    KARAMANLIDIS, D
    GESCHKARAMANLIDIS, H
    [J]. THIN-WALLED STRUCTURES, 1986, 4 (04) : 247 - 267