Radiomics in neuro-oncology: Basics, workflow, and applications

被引:71
|
作者
Lohmann, Philipp [1 ,2 ,3 ,4 ,5 ]
Galldiks, Norbert [1 ,6 ,7 ,8 ,9 ]
Kocher, Martin [1 ,2 ,3 ,6 ,7 ,8 ,9 ]
Heinzel, Alexander [1 ,10 ,11 ]
Filss, Christian P. [1 ,10 ,11 ]
Stegmayr, Carina [1 ]
Mottaghy, Felix M. [6 ,7 ,8 ,9 ,10 ,11 ,12 ]
Fink, Gereon R. [1 ,4 ,5 ]
Shah, N. Jon [1 ,13 ,14 ]
Langen, Karl-Josef [1 ,6 ,7 ,8 ,9 ,10 ,11 ,13 ]
机构
[1] Res Ctr Juelich, Inst Neurosci & Med INM 3 4 11, Wilhelm Johnen Str, D-52428 Julich, Germany
[2] Fac Med, Ctr Neurosurg, Dept Stereotaxy & Funct Neurosurg, Kerpener Str 62, D-50937 Cologne, Germany
[3] Univ Hosp Cologne, Kerpener Str 62, D-50937 Cologne, Germany
[4] Univ Cologne, Fac Med, Dept Neurol, Kerpener Str 62, D-50937 Cologne, Germany
[5] Univ Cologne, Univ Hosp Cologne, Kerpener Str 62, D-50937 Cologne, Germany
[6] Univ Aachen, Ctr Integrated Oncol CIO, Kerpener Str 62, D-50937 Cologne, Germany
[7] Univ Bonn, Ctr Integrated Oncol CIO, Kerpener Str 62, D-50937 Cologne, Germany
[8] Univ Cologne, Ctr Integrated Oncol CIO, Kerpener Str 62, D-50937 Cologne, Germany
[9] Univ Duesseldorf, Ctr Integrated Oncol CIO, Kerpener Str 62, D-50937 Cologne, Germany
[10] Rhein Westfal TH Aachen, Dept Nucl Med, Pauwelsstr 30, D-52074 Aachen, Germany
[11] Rhein Westfal TH Aachen, Comprehens Diagnost Ctr Aachen CDCA, Pauwelsstr 30, D-52074 Aachen, Germany
[12] Maastricht Univ Med Ctr MUMC, Dept Radiol & Nucl Med, P Debeylaan 25,POB 5800, NL-6202 AZ Maastricht, Netherlands
[13] JARA BRAIN Translat Med, Aachen, Germany
[14] Rhein Westfal TH Aachen, Dept Neurol, Pauwelsstr 30, D-52074 Aachen, Germany
关键词
Artificial Intelligence; Machine learning; Deep learning; Glioma; Brain metastases; Multiparametric PET; MRI; MGMT PROMOTER METHYLATION; CONVOLUTIONAL NEURAL-NETWORK; HIGH-GRADE GLIOMAS; BRAIN METASTASES; 1P/19Q CODELETION; RADIATION-THERAPY; TEXTURAL FEATURES; IDH GENOTYPE; MR-IMAGES; PSEUDOPROGRESSION;
D O I
10.1016/j.ymeth.2020.06.003
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Over the last years, the amount, variety, and complexity of neuroimaging data acquired in patients with brain tumors for routine clinical purposes and the resulting number of imaging parameters have substantially increased. Consequently, a timely and cost-effective evaluation of imaging data is hardly feasible without the support of methods from the field of artificial intelligence (AI). AI can facilitate and shorten various timeconsuming steps in the image processing workflow, e.g., tumor segmentation, thereby optimizing productivity. Besides, the automated and computer-based analysis of imaging data may help to increase data comparability as it is independent of the experience level of the evaluating clinician. Importantly, AI offers the potential to extract new features from the routinely acquired neuroimages of brain tumor patients. In combination with patient data such as survival, molecular markers, or genomics, mathematical models can be generated that allow, for example, the prediction of treatment response or prognosis, as well as the noninvasive assessment of molecular markers. The subdiscipline of AI dealing with the computation, identification, and extraction of image features, as well as the generation of prognostic or predictive mathematical models, is termed radiomics. This review article summarizes the basics, the current workflow, and methods used in radiomics with a focus on feature-based radiomics in neuro-oncology and provides selected examples of its clinical application.
引用
收藏
页码:112 / 121
页数:10
相关论文
共 50 条
  • [1] Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging
    Ahmed Abdel Khalek Abdel Razek
    Ahmed Alksas
    Mohamed Shehata
    Amr AbdelKhalek
    Khaled Abdel Baky
    Ayman El-Baz
    Eman Helmy
    [J]. Insights into Imaging, 12
  • [2] Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging
    Abdel Razek, Ahmed Abdel Khalek
    Alksas, Ahmed
    Shehata, Mohamed
    AbdelKhalek, Amr
    Abdel Baky, Khaled
    El-Baz, Ayman
    Helmy, Eman
    [J]. INSIGHTS INTO IMAGING, 2021, 12 (01)
  • [3] PET/MRI radiomics in neuro-oncology
    Galldiks, N.
    [J]. EUROPEAN JOURNAL OF NEUROLOGY, 2023, 30 : 24 - 24
  • [4] Potential and limitations of radiomics in neuro-oncology
    Taha, Birra
    Boley, Daniel
    Sun, Ju
    Chen, Clark
    [J]. JOURNAL OF CLINICAL NEUROSCIENCE, 2021, 90 : 206 - 211
  • [5] Workflow in a pediatric neuro-oncology center
    Mohamed Reda Rady
    [J]. Egyptian Journal of Neurosurgery, 37
  • [6] Workflow in a pediatric neuro-oncology center
    Rady, Mohamed Reda
    [J]. EGYPTIAN JOURNAL OF NEUROSURGERY, 2022, 37 (01)
  • [7] Radiomics and radiogenomics in pediatric neuro-oncology: A review
    Madhogarhia, Rachel
    Haldar, Debanjan
    Bagheri, Sina
    Familiar, Ariana
    Anderson, Hannah
    Arif, Sherjeel
    Vossough, Arastoo
    Storm, Phillip
    Resnick, Adam
    Davatzikos, Christos
    Kazerooni, Anahita Fathi
    Nabavizadeh, Ali
    [J]. NEURO-ONCOLOGY ADVANCES, 2022, 4 (01)
  • [8] Radiomics and Radiogenomics with Deep Learning in Neuro-oncology
    Patel, Jay
    Gidwani, Mishka
    Chang, Ken
    Kalpathy-Cramer, Jayashree
    [J]. MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020, 2020, 12449 : 199 - 211
  • [9] Roadmap for the clinical integration of radiomics in neuro-oncology
    Hu, Leland S.
    Swanson, Kristin R.
    [J]. NEURO-ONCOLOGY, 2020, 22 (06) : 743 - 745
  • [10] APPLICATIONS OF IMMUNOCRYOULTRAMICROTOMY TO NEURO-ONCOLOGY
    MIGHELI, A
    GODINO, M
    DAGOSTINO, U
    [J]. CLINICAL NEUROPATHOLOGY, 1988, 7 (04) : 188 - 188