Lack of universality in decaying magnetohydrodynamic turbulence

被引:70
|
作者
Lee, E. [1 ,2 ]
Brachet, M. E. [1 ,3 ]
Pouquet, A. [1 ]
Mininni, P. D. [1 ,4 ]
Rosenberg, D. [1 ]
机构
[1] Natl Ctr Atmospher Res, Geophys Turbulence Program, Boulder, CO 80307 USA
[2] Katholieke Univ Leuven, Ctr Plasma Astrofys, Dept Wiskunde, B-3001 Louvain, Belgium
[3] Ecole Normale Super, F-75005 Paris, France
[4] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 01期
基金
美国国家科学基金会;
关键词
EXTERNAL MAGNETIC-FIELD; WEAK MHD TURBULENCE; ENERGY-SPECTRUM; DYNAMO ACTION; SIMULATIONS; FLUCTUATIONS; DISSIPATION; EXPONENTS; FLUID;
D O I
10.1103/PhysRevE.81.016318
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using computations of three-dimensional magnetohydrodynamic (MHD) turbulence with a Taylor-Green flow, whose inherent time-independent symmetries are implemented numerically, and in the absence of either a forcing function or an imposed uniform magnetic field, we show that three different inertial ranges for the energy spectrum may emerge for three different initial magnetic fields, the selecting parameter being the ratio of nonlinear eddy to Alfven time. Equivalent computational grids range from 1283 to 20483 points with a unit magnetic Prandtl number and a Taylor Reynolds number of up to 1500 at the peak of dissipation. We also show a convergence of our results with Reynolds number. Our study is consistent with previous findings of a variety of energy spectra in MHD turbulence by studies performed in the presence of both a forcing term with a given correlation time and a strong, uniform magnetic field. However, in contrast to the previous studies, here the ratio of characteristic time scales can only be ascribed to the intrinsic nonlinear dynamics of the paradigmatic flows under study.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Parameter study of decaying magnetohydrodynamic turbulence
    Armua, Andres
    Berera, Arjun
    Calderon-Figueroa, Jaime
    [J]. PHYSICAL REVIEW E, 2023, 107 (05)
  • [2] The residual energy in freely decaying magnetohydrodynamic turbulence
    Müller, WC
    Grappin, R
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2004, 46 : B91 - B96
  • [3] Nonuniversality and Finite Dissipation in Decaying Magnetohydrodynamic Turbulence
    Linkmann, M. F.
    Berera, A.
    McComb, W. D.
    Mckay, M. E.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (23)
  • [4] Magnetic helicity and the evolution of decaying magnetohydrodynamic turbulence
    Berera, Arjun
    Linkmann, Moritz
    [J]. PHYSICAL REVIEW E, 2014, 90 (04):
  • [5] Energy exchange in magnetohydrodynamic decaying isotropic turbulence
    Richard, J. C.
    Riley, B. M.
    Girimaji, S. S.
    [J]. TURBULENCE, HEAT AND MASS TRANSFER 6, 2009, : 981 - 984
  • [6] DYNAMICS OF DECAYING TWO-DIMENSIONAL MAGNETOHYDRODYNAMIC TURBULENCE
    BISKAMP, D
    WELTER, H
    [J]. PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (10): : 1964 - 1979
  • [7] Strong universality in forced and decaying turbulence in a shell model
    L'vov, VS
    Pasmanter, RA
    Pomyalov, A
    Procaccia, I
    [J]. PHYSICAL REVIEW E, 2003, 67 (06):
  • [8] Evolution of magnetic fields in freely decaying magnetohydrodynamic turbulence
    Campanelli, Leonardo
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (25)
  • [9] Structures and dynamics of small scales in decaying magnetohydrodynamic turbulence
    Dallas, V.
    Alexakis, A.
    [J]. PHYSICS OF FLUIDS, 2013, 25 (10)
  • [10] Spectra of Decaying Two-Dimensional Magnetohydrodynamic Turbulence on a β-Plane
    T. A. Zinyakov
    A. S. Petrosyan
    [J]. JETP Letters, 2020, 111 : 76 - 84