Engineering the Erythromycin-Producing Strain Saccharopolyspora erythraea HOE107 for the Heterologous Production of Polyketide Antibiotics

被引:12
|
作者
Lu, Jin [1 ]
Long, Qingshan [1 ]
Zhao, Zhilong [2 ]
Chen, Lu [1 ]
He, Weijun [1 ]
Hong, Jiali [1 ]
Liu, Kai [1 ]
Wang, Yemin [1 ]
Pang, Xiuhua [2 ]
Deng, Zixin [1 ]
Tao, Meifeng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Joint Int Res Lab Metab & Dev Sci, Shanghai Islamabad Belgrade Joint Innovat Ctr Ant, State Key Lab Microbial Metab,Sch Sci & Biotechno, Shanghai, Peoples R China
[2] Shandong Univ, Sch Life Sci, State Key Lab Microbial Technol, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
Saccharopolyspora erythraea; CRISPR; Cas9-CodA(sm); heterologous expression; polyketides; antibiotic production; INTERGENERIC CONJUGAL TRANSFER; BIOSYNTHETIC GENE-CLUSTER; STREPTOMYCES-COELICOLOR; ESCHERICHIA-COLI; GENOME SEQUENCE; PLASMID DNA; CLONING; EXPRESSION; SYNTHASE; SPINOSAD;
D O I
10.3389/fmicb.2020.593217
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Bacteria of the genus Saccharopolyspora produce important polyketide antibiotics, including erythromycin A (Sac. erythraea) and spinosad (Sac. spinosa). We herein report the development of an industrial erythromycin-producing strain, Sac. erythraea HOE107, into a host for the heterologous expression of polyketide biosynthetic gene clusters (BGCs) from other Saccharopolyspora species and related actinomycetes. To facilitate the integration of natural product BGCs and auxiliary genes beneficial for the production of natural products, the erythromycin polyketide synthase (ery) genes were replaced with two bacterial attB genomic integration sites associated with bacteriophages phi C31 and phi BT1. We also established a highly efficient conjugation protocol for the introduction of large bacterial artificial chromosome (BAC) clones into Sac. erythraea strains. Based on this optimized protocol, an arrayed BAC library was effectively transferred into Sac. erythraea. The large spinosad gene cluster from Sac. spinosa and the actinorhodin gene cluster from Streptomyces coelicolor were successfully expressed in the ery deletion mutant. Deletion of the endogenous giant polyketide synthase genes pkeA1-pkeA4, the product of which is not known, and the flaviolin gene cluster (rpp) from the bacterium increased the heterologous production of spinosad and actinorhodin. Furthermore, integration of pJTU6728 carrying additional beneficial genes dramatically improved the yield of actinorhodin in the engineered Sac. erythraea strains. Our study demonstrated that the engineered Sac. erythraea strains SLQ185, LJ161, and LJ162 are good hosts for the expression of heterologous antibiotics and should aid in expression-based genome-mining approaches for the discovery of new and cryptic antibiotics from Streptomyces and rare actinomycetes.
引用
收藏
页数:14
相关论文
共 42 条
  • [1] AN UNUSUALLY LARGE MULTIFUNCTIONAL POLYPEPTIDE IN THE ERYTHROMYCIN-PRODUCING POLYKETIDE SYNTHASE OF SACCHAROPOLYSPORA-ERYTHRAEA
    CORTES, J
    HAYDOCK, SF
    ROBERTS, GA
    BEVITT, DJ
    LEADLAY, PF
    NATURE, 1990, 348 (6297) : 176 - 178
  • [2] High frequency transformation of the industrial erythromycin-producing bacterium Saccharopolyspora erythraea
    Wang, Yong
    Wang, YiGuang
    Zhang, Siliang
    BIOTECHNOLOGY LETTERS, 2008, 30 (02) : 357 - 361
  • [3] Sonication-dependent electroporation of the erythromycin-producing bacterium Saccharopolyspora erythraea
    Fitzgerald, NB
    English, RS
    Lampel, JS
    Vanden Boom, TJ
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1998, 64 (04) : 1580 - 1583
  • [4] High frequency transformation of the industrial erythromycin-producing bacterium Saccharopolyspora erythraea
    Yong Wang
    YiGuang Wang
    Siliang Zhang
    Biotechnology Letters, 2008, 30 : 357 - 361
  • [5] Physical-genetic map of the erythromycin-producing organism Saccharopolyspora erythraea
    Reeves, AR
    Post, DA
    Vanden Boom, TJ
    MICROBIOLOGY-UK, 1998, 144 : 2151 - 2159
  • [6] Recent developments in the molecular genetics of the erythromycin-producing organism Saccharopolyspora erythraea
    Vanden Boom, TJ
    ADVANCES IN APPLIED MICROBIOLOGY, VOL 47, 2000, 47 : 79 - 111
  • [7] Exploring the metabolic fate of propanol in industrial erythromycin-producing strain via 13C labeling experiments and enhancement of erythromycin production by rational metabolic engineering of Saccharopolyspora erythraea
    Xu, Feng
    Ke, Xiang
    Hong, Ming
    Huang, Mingzhi
    Chen, Chongchong
    Tian, Xiwei
    Hang, Haifeng
    Chu, Ju
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2021, 542 : 73 - 79
  • [8] Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338
    Oliynyk, Markiyan
    Samborskyy, Markiyan
    Lester, John B.
    Mironenko, Tatiana
    Scott, Nataliya
    Dickens, Shilo
    Haydock, Stephen F.
    Leadlay, Peter F.
    NATURE BIOTECHNOLOGY, 2007, 25 (04) : 447 - 453
  • [9] Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338
    Markiyan Oliynyk
    Markiyan Samborskyy
    John B Lester
    Tatiana Mironenko
    Nataliya Scott
    Shilo Dickens
    Stephen F Haydock
    Peter F Leadlay
    Nature Biotechnology, 2007, 25 : 447 - 453
  • [10] Isolation of isoflavones from soy-based fermentations of the erythromycin-producing bacterium Saccharopolyspora erythraea
    Hessler, PE
    Larsen, PE
    Constantinou, AI
    Schram, KH
    Weber, JM
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1997, 47 (04) : 398 - 404