Knowledge guided object detection and identification in 3D Point Clouds

被引:4
|
作者
Karmacharya, A. [1 ]
Boochs, F. [1 ]
Tietz, B. [1 ]
机构
[1] Hsch Mainz, Inst I3mainz, Fachbereich Geoinformat & Vermessung 1, D-55128 Mainz, Germany
关键词
Algorithms Selection Module; Numerical Processing; Semantic Technologies; Object Detection and Identification; Knowledge Modeling; Expert System;
D O I
10.1117/12.2184801
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Modern instruments like laser scanner and 3D cameras or image based techniques like structure from motion produce huge point clouds as base for further object analysis. This has considerably changed the way of data compilation away from selective manually guided processes towards automatic and computer supported strategies. However it's still a long way to achieve the quality and robustness of manual processes as data sets are mostly very complex. Looking at existing strategies 3D data processing for object detections and reconstruction rely heavily on either data driven or model driven approaches. These approaches come with their limitation on depending highly on the nature of data and inability to handle any deviation. Furthermore, the lack of capabilities to integrate other data or information in between the processing steps further exposes their limitations. This restricts the approaches to be executed with strict predefined strategy and does not allow deviations when and if new unexpected situations arise. We propose a solution that induces intelligence in the processing activities through the usage of semantics. The solution binds the objects along with other related knowledge domains to the numerical processing to facilitate the detection of geometries and then uses experts' inference rules to annotate them. The solution was tested within the prototypical application of the research project "Wissensbasierte Detektion von Objekten in Punktwolken fur Anwendungen im Ingenieurbereich (WiDOP)". The flexibility of the solution is demonstrated through two entirely different USE Case scenarios: Deutsche Bahn (German Railway System) for the outdoor scenarios and Fraport (Frankfort Airport) for the indoor scenarios. Apart from the difference in their environments, they provide different conditions, which the solution needs to consider. While locations of the objects in Fraport were previously known, that of DB were not known at the beginning.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Boundary points guided 3D object detection for point clouds
    Tang, Qingsong
    Yang, Mingzhi
    Wang, Ziyi
    Dong, Wenhao
    Liu, Yang
    [J]. APPLIED SOFT COMPUTING, 2024, 165
  • [2] Language guided 3D object detection in point clouds for MEP scenes
    Li, Junjie
    Du, Shengli
    Liu, Jianfeng
    Chen, Weibiao
    Tang, Manfu
    Zheng, Lei
    Wang, Lianfa
    Ji, Chunle
    Yu, Xiao
    Yu, Wanli
    [J]. IET COMPUTER VISION, 2024, 18 (04) : 526 - 539
  • [3] Deep Hough Voting for 3D Object Detection in Point Clouds
    Qi, Charles R.
    Litany, Or
    He, Kaiming
    Guibas, Leonidas J.
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9276 - 9285
  • [4] 3D Object Detection with Normal-map on Point Clouds
    Miao, Jishu
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    Fujiyoshi, Hironobu
    [J]. VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP, 2021, : 569 - 576
  • [5] A robust scheme for copy detection of 3D object point clouds
    Yang, Jiaqi
    Lu, Xuequan
    Chen, Wenzhi
    [J]. NEUROCOMPUTING, 2022, 510 : 181 - 192
  • [6] Weakly Supervised 3D Object Detection from Point Clouds
    Qin, Zengyi
    Wang, Jinglu
    Lu, Yan
    [J]. MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 4144 - 4152
  • [7] Relation Graph Network for 3D Object Detection in Point Clouds
    Feng, Mingtao
    Gilani, Syed Zulqarnain
    Wang, Yaonan
    Zhang, Liang
    Mian, Ajmal
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 92 - 107
  • [8] Enhanced Vote Network for 3D Object Detection in Point Clouds
    Zhong, Min
    Zeng, Gang
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 6624 - 6631
  • [9] 3D Object Detection Algorithm Based on Raw Point Clouds
    Zhang, Dongdong
    Guo, Jie
    Chen, Yang
    [J]. Computer Engineering and Applications, 2024, 59 (03) : 209 - 217
  • [10] Optimisation of the PointPillars network for 3D object detection in point clouds
    Stanisz, Joanna
    Lis, Konrad
    Kryjak, Tomasz
    Gorgon, Marek
    [J]. 2020 SIGNAL PROCESSING - ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2020, : 122 - 127