A Spatio-temporal Atlas of the Human Fetal Brain with Application to Tissue Segmentation

被引:0
|
作者
Habas, Piotr A. [1 ,2 ]
Kim, Kio [1 ,2 ]
Rousseau, Francois [3 ]
Glenn, Orit A. [2 ]
Barkovich, A. James [2 ]
Studholme, Colin [1 ,2 ]
机构
[1] Univ Calif San Francisco, Biomed Image Comp Grp, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
[3] CNRS, UMR 7005, LSIIT, ULP, F-67412 Illkirch Graffenstaden, France
关键词
MR-IMAGES; AUTOMATIC SEGMENTATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modeling and analysis of MR images of the early developing human brain is a challenge because of the transient nature of different tissue classes during brain growth. To address this issue, a statistical model that can capture the spatial variation of structures over time is needed. Here; we present an approach to building a spatio-temporal model of tissue distribution in the developing brain which can incorporate both developed tissues as well as transient tissue classes such as Hie germinal matrix by using constrained higher order polynomial models. This spatiotemporal model is created from a set, of manual segmentations through groupwise registration and voxelwise non-linear modeling of tissue class membership Oat allows us to represent the appearance as well as disappearance of the transient, brain structures over time. Applying this model to atlas-based segmentation, we generate age-specific tissue probability maps and rise them to initialize an EM segmentation of the fetal brain tissues. The approach is evaluated using clinical MR images of young fetuses with gestational ages ranging from 20.57 to 24.71 weeks. Results indicate improvement in performance of atlas-based EM segmentation provided by higher order temporal models that capture the variation of tissue occurrence over time.
引用
收藏
页码:289 / +
页数:2
相关论文
共 50 条
  • [1] STAB: a spatio-temporal cell atlas of the human brain
    Song, Liting
    Pan, Shaojun
    Zhang, Zichao
    Jia, Longhao
    Chen, Wei-Hua
    Zhao, Xing-Ming
    [J]. NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) : D1029 - D1037
  • [2] FEST: LEARNING SPATIO-TEMPORAL PRIORS FOR FETAL BRAIN MRI SEGMENTATION
    Penuela, Maria F.
    Vargas, Luisa
    Usma, Santiago
    Escobar, Maria
    Castillo, Angela
    Arbelaez, Pablo
    [J]. 2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [3] Spatio-temporal segmentation
    Swain, C
    Puri, A
    [J]. VISUAL COMMUNICATIONS AND IMAGE PROCESSING '99, PARTS 1-2, 1998, 3653 : 1233 - 1236
  • [4] Spatio-temporal transcriptome of the human brain
    Hyo Jung Kang
    Yuka Imamura Kawasawa
    Feng Cheng
    Ying Zhu
    Xuming Xu
    Mingfeng Li
    André M. M. Sousa
    Mihovil Pletikos
    Kyle A. Meyer
    Goran Sedmak
    Tobias Guennel
    Yurae Shin
    Matthew B. Johnson
    Željka Krsnik
    Simone Mayer
    Sofia Fertuzinhos
    Sheila Umlauf
    Steven N. Lisgo
    Alexander Vortmeyer
    Daniel R. Weinberger
    Shrikant Mane
    Thomas M. Hyde
    Anita Huttner
    Mark Reimers
    Joel E. Kleinman
    Nenad Šestan
    [J]. Nature, 2011, 478 : 483 - 489
  • [5] Spatio-temporal transcriptome of the human brain
    Kang, Hyo Jung
    Kawasawa, Yuka Imamura
    Cheng, Feng
    Zhu, Ying
    Xu, Xuming
    Li, Mingfeng
    Sousa, Andre M. M.
    Pletikos, Mihovil
    Meyer, Kyle A.
    Sedmak, Goran
    Guennel, Tobias
    Shin, Yurae
    Johnson, Matthew B.
    Krsnik, Zeljka
    Mayer, Simone
    Fertuzinhos, Sofia
    Umlauf, Sheila
    Lisgo, Steven N.
    Vortmeyer, Alexander
    Weinberger, Daniel R.
    Mane, Shrikant
    Hyde, Thomas M.
    Huttner, Anita
    Reimers, Mark
    Kleinman, Joel E.
    Sestan, Nenad
    [J]. NATURE, 2011, 478 (7370) : 483 - 489
  • [6] STAB2: an updated spatio-temporal cell atlas of the human and mouse brain
    Yang, Yucheng T.
    Gan, Ziquan
    Zhang, Jinglong
    Zhao, Xingzhong
    Yang, Yifan
    Han, Shuwen
    Wu, Wei
    Zhao, Xing-Ming
    [J]. NUCLEIC ACIDS RESEARCH, 2023, : D1033 - D1041
  • [7] Application of spatio-temporal filtering to fetal electrocardiogram enhancement
    Kotas, M.
    Jezewski, J.
    Horoba, K.
    Matonia, A.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (01) : 1 - 9
  • [8] A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation
    Habas, Piotr A.
    Kim, Kio
    Corbett-Detig, James M.
    Rousseau, Francois
    Glenn, Orit A.
    Barkovich, A. James
    Studholme, Colin
    [J]. NEUROIMAGE, 2010, 53 (02) : 460 - 470
  • [9] A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation
    Dittrich, Eva
    Raviv, Tammy Riklin
    Kasprian, Gregor
    Donner, Rene
    Brugger, Peter C.
    Prayer, Daniela
    Langs, Georg
    [J]. MEDICAL IMAGE ANALYSIS, 2014, 18 (01) : 9 - 21
  • [10] Construction of a fetal spatio-temporal cortical surface atlas from in utero MRI: Application of spectral surface matching
    Wright, R.
    Makropoulos, A.
    Kyriakopoulou, V.
    Patkee, P. A.
    Koch, L. M.
    Rutherford, M. A.
    Hajnal, J. V.
    Rueckert, D.
    Aljabar, P.
    [J]. NEUROIMAGE, 2015, 120 : 467 - 480