A Novel Texture Descriptor for Interest Point Detectors

被引:0
|
作者
Yao, Qiong [1 ]
Xu, Xiang [1 ]
Zou, Kun [1 ]
机构
[1] Univ Elect Sci & Technol China, Zhongshan Inst, Sch Comp Engn, Chengdu 528400, Peoples R China
关键词
Local similarity descriptor (LSS); FREAK; Image match;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Feature descriptors combined with interest point detectors play an important role on image matching. The last decade, many descriptors, such as Scale Invariant Feature Transform (SIFT), Speed-up Robust Feature (SURF) and Fast Retina Keypoint (FREAK), come out to make it faster to compute, more compact while remaining robust to scale, rotation and noise. This paper introduces a novel texture descriptor computed on the regions detected by interest point detectors. The texture descriptor is 'local self-similarity (LSS) descriptor', which has been successfully used for generating a compact sketch best representing the common ensemble shared by all input images. While in this paper, LSS descriptor is to catch the texture features around the single interest point. Extensive comparisons demonstrate the LSS descriptor with Harris corner detector can achieve more robust and efficient correspondences.
引用
收藏
页码:34 / 39
页数:6
相关论文
共 50 条
  • [1] A comparison of interest point and region detectors on structured, range and texture images
    Kazmi, Wajahat
    Andersen, Hans Jorgen
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2015, 32 : 156 - 169
  • [2] DERMOSCOPIC INTEREST POINT DETECTOR AND DESCRIPTOR
    Zhou, Howard
    Chen, Mei
    Rehg, James M.
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 1318 - +
  • [3] A Novel Texture Spectrum Descriptor
    Yan, Shenhai
    Huang, Xiantong
    Liu, Yang
    [J]. ADVANCED DESIGN AND MANUFACTURING TECHNOLOGY III, PTS 1-4, 2013, 397-400 : 1494 - 1499
  • [4] A Combined Approach of Multiscale Texture Analysis and Interest Point/Corner Detectors for Microcalcifications Diagnosis
    Losurdo, Liliana
    Fanizzi, Annarita
    Basile, Teresa M. A.
    Bellotti, Roberto
    Bottigli, Ubaldo
    Dentamaro, Rosalba
    Didonna, Vittorio
    Fausto, Alfonso
    Massafra, Raffaella
    Monaco, Alfonso
    Moschetta, Marco
    Popescu, Ondina
    Tamborra, Pasquale
    Tangaro, Sabina
    La Forgia, Daniele
    [J]. BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2018, PT I, 2018, 10813 : 302 - 313
  • [5] Evaluation of Interest Point Detectors
    Cordelia Schmid
    Roger Mohr
    Christian Bauckhage
    [J]. International Journal of Computer Vision, 2000, 37 : 151 - 172
  • [6] Evaluation of interest point detectors
    Schmid, C
    Mohr, R
    Bauckhage, C
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2000, 37 (02) : 151 - 172
  • [7] Automated Evaluation of Interest Point Detectors
    Lang, Simon R.
    Luerssen, Martin H.
    Powers, David M. W.
    [J]. 2013 IEEE/ACIS 12TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS), 2013, : 443 - 447
  • [8] Interest point detectors for visual SLAM
    Martinez Mozos, Oscar
    Gil, Arturo
    Ballesta, Monica
    Reinoso, Oscar
    [J]. CURRENT TOPICS IN ARTIFICIAL INTELLIGENCE, 2007, 4788 : 170 - +
  • [9] Automated Evaluation of Interest Point Detectors
    Lang, Simon R.
    Luerssen, Martin H.
    Powers, David M. W.
    [J]. INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2014, 2 (01) : 86 - 105
  • [10] Measuring the Coverage of Interest Point Detectors
    Ehsan, Shoaib
    Kanwal, Nadia
    Clark, Adrian F.
    McDonald-Maier, Klaus D.
    [J]. IMAGE ANALYSIS AND RECOGNITION: 8TH INTERNATIONAL CONFERENCE, ICIAR 2011, PT I, 2011, 6753 : 253 - 261