Blow-up and global solutions for nonlinear reaction-diffusion equations with Neumann boundary conditions

被引:12
|
作者
Ding, Juntang [1 ]
Li, Shengjia [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear reaction-diffusion equations; blow-up solutions; global solutions;
D O I
10.1016/j.na.2006.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The type of problem under consideration is [GRAPHICS] where D subset of R-N is a bounded domain with smooth boundary partial derivative D, N >= 2. It is proved that if beta - 1 > sigma >= alpha >= 0, the positive solution u(x, 1) blows up globally in (D) over bar, whereas if 0 <= beta <= sigma <= alpha-1, the positive solution u(x, t) is global solution. Furthermore, an upper bound of the "blow-up time", an upper estimate of the "blow-up rate", and an upper estimate of the global solutions are given. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:507 / 514
页数:8
相关论文
共 50 条