Multiple positive solutions to systems of nonlinear semipositone fractional differential equations with coupled boundary conditions

被引:0
|
作者
Yuan, Chengjun [2 ,5 ]
Jiang, Daqing [2 ]
O'Regan, Donal [3 ]
Agarwal, Ravi P. [1 ,4 ]
机构
[1] Texas A&M Univ, Dept Math, Kingsville, TX USA
[2] NE Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[3] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
[4] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[5] Harbin Univ, Sch Math & Comp, Harbin 150086, Heilongjiang, Peoples R China
基金
黑龙江省自然科学基金;
关键词
Riemann-Liouville's fractional derivative; semipositone fractional differential equation; four-point coupled boundary value problem; positive solution; fixed-point theorem; PARABOLIC EVOLUTION-EQUATIONS; BLOW-UP; HEAT-EQUATIONS; EXISTENCE; UNIQUENESS; CALCULUS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider four-point coupled boundary value problem for systems of the nonlinear semipositone fractional differential equation {D-0+(alpha)+u + lambda f(t, u, v) = 0, 0 < t < 1, lambda > 0, D-0+(alpha)+v + lambda g(t, u, v) = 0, u((i))(0) = v((i))(0) = 0, 0 <= i <= n -2, u(1) = av(xi), v(1) = bu(eta), xi, eta is an element of (0,1) where lambda is a parameter, a, b, xi, eta satisfy xi, eta is an element of (0, 1), 0 < ab xi eta < 1, alpha is an element of (n - 1, n] is a real number and n >= 3, and D-0+(alpha) is the Riemann-Liouville's fractional derivative, and f, g are continuous and semipositone. We derive an interval on lambda such that for any lambda lying in this interval, the semipositone boundary value problem has multiple positive solutions.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条