EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR P-LAPLACIAN STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

被引:0
|
作者
Hai, D. D. [1 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
关键词
Singular Sturm-Liouville boundary value problem; positive solution;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of positive solutions of the Sturm-Liouville boundary value problem -(r(t)phi(u'))' = lambda g(t)f(t, u), t is an element of(0,1), au(0) - b phi(-1)(r(0))u'(0) = 0, cu(1) +d phi(-1)(r(1))u'(1) = 0, where phi(u') = vertical bar u'vertical bar(p-2)u', p > 1, f : (0, 1) x (0, infinity) -> R satisfies a p-sublinear condition and is allowed to be singular at u = 0 with semipositone structure. Our results extend previously known results in the literature.
引用
收藏
页数:9
相关论文
共 50 条