Muscle Damage in Dystrophic mdx Mice Is Influenced by the Activity of Ca2+-Activated KCa3.1 Channels

被引:3
|
作者
Morotti, Marta [1 ]
Garofalo, Stefano [1 ]
Cocozza, Germana [2 ]
Antonangeli, Fabrizio [3 ]
Bianconi, Valeria [4 ]
Mozzetta, Chiara [4 ]
De Stefano, Maria Egle [5 ]
Capitani, Riccardo [1 ]
Wulff, Heike [6 ]
Limatola, Cristina [2 ,7 ]
Catalano, Myriam [1 ]
Grassi, Francesca [1 ]
机构
[1] Sapienza Univ Rome, Dept Physiol & Pharmacol, I-00185 Rome, Italy
[2] Ist Ricovero & Cura Carattere Sci IRCCS Neuromed, I-86077 Pozzilli, Italy
[3] Sapienza Univ Rome, Inst Mol Biol & Pathol, Dept Mol Med, Natl Res Council CNR, I-00185 Rome, Italy
[4] Sapienza Univ Rome, Inst Mol Biol & Pathol, Dept Biol & Biotechnol, Natl Res Council CNR, I-00185 Rome, Italy
[5] Sapienza Univ Rome, Dept Biol & Biotechnol, I-00185 Rome, Italy
[6] Univ Calif Davis, Dept Pharmacol, Davis, CA 95616 USA
[7] Sapienza Univ Rome, Dept Physiol & Pharmacol, Lab Affiliated Ist Pasteur Italia, I-00185 Rome, Italy
来源
LIFE-BASEL | 2022年 / 12卷 / 04期
关键词
Duchenne muscular dystrophy; macrophages; fibroblasts; fibrosis; Kcnn4; K(Ca)3; 1; grip strength; hanging time; neuromuscular junction; fiber size; DUCHENNE MUSCULAR-DYSTROPHY; MURINE MACROPHAGES; FIBROSIS; MOUSE; EXPRESSION; INFARCTION; SURVIVAL; MODEL;
D O I
10.3390/life12040538
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Duchenne muscular dystrophy (DMD) is an X-linked disease, caused by a mutant dystrophin gene, leading to muscle membrane instability, followed by muscle inflammation, infiltration of pro-inflammatory macrophages and fibrosis. The calcium-activated potassium channel type 3.1 (K(Ca)3.1) plays key roles in controlling both macrophage phenotype and fibroblast proliferation, two critical contributors to muscle damage. In this work, we demonstrate that pharmacological blockade of the channel in the mdx mouse model during the early degenerative phase favors the acquisition of an anti-inflammatory phenotype by tissue macrophages and reduces collagen deposition in muscles, with a concomitant reduction of muscle damage. As already observed with other treatments, no improvement in muscle performance was observed in vivo. In conclusion, this work supports the idea that K(Ca)3.1 channels play a contributing role in controlling damage-causing cells in DMD. A more complete understanding of their function could lead to the identification of novel therapeutic approaches.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] KCa3.1 Ca2+-Activated K+ channels regulate human airway smooth muscle proliferation
    Shepherd, Malcolm C.
    Duffy, S. Mark
    Harris, Trudi
    Cruse, Glenn
    Schuliga, Michael
    Brightling, Chris E.
    Neylon, Craig B.
    Bradding, Peter
    Stewart, Alastair G.
    AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2007, 37 (05) : 525 - 531
  • [2] The Role of Retromer in the Trafficking of the Ca2+-activated K+ channels KCa2.3 and KCa3.1
    Logue, Matthew
    Cheung, Tanya
    Devor, Caitlin
    Devor, Daniel
    McDonald, Fiona
    Hamilton, Kirk
    FASEB JOURNAL, 2021, 35
  • [3] Novel Phenolic Inhibitors of Small/IntermediateConductance Ca2+-Activated K+ Channels, KCa3.1 and KCa2.3
    Olivan-Viguera, Aida
    Sofia Valero, Marta
    Divina Murillo, Maria
    Wulff, Heike
    Garcia-Otin, Angel-Luis
    Arbones-Mainar, Jose-Miguel
    Koehler, Ralf
    PLOS ONE, 2013, 8 (03):
  • [4] The feeding behaviour of Amyotrophic Lateral Sclerosis mouse models is modulated by the Ca2+-activated KCa3.1 channels
    Cocozza, Germana
    Garofalo, Stefano
    Morotti, Marta
    Chece, Giuseppina
    Grimaldi, Alfonso
    Lecce, Mario
    Scavizzi, Ferdinando
    Menghini, Rossella
    Casagrande, Viviana
    Federici, Massimo
    Raspa, Marcello
    Wulff, Heike
    Limatola, Cristina
    BRITISH JOURNAL OF PHARMACOLOGY, 2021, 178 (24) : 4891 - 4906
  • [5] Functional Roles of the Ca2+-activated K+ Channel, KCa3.1, in Brain Tumors
    D'Alessandro, Giuseppina
    Limatola, Cristina
    Catalano, Myriam
    CURRENT NEUROPHARMACOLOGY, 2018, 16 (05) : 636 - 643
  • [6] Ca2+-Activated K+ Channel KCa3.1 as a Therapeutic Target for Immune Disorders
    Ohya, Susumu
    Kito, Hiroaki
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2018, 41 (08) : 1158 - 1163
  • [7] A proinvasive role for the Ca2+-activated K+ channel KCa3.1 in malignant glioma
    Turner, Kathryn L.
    Honasoge, Avinash
    Robert, Stephanie M.
    McFerrin, Michael M.
    Sontheimer, Harald
    GLIA, 2014, 62 (06) : 971 - 981
  • [8] Ca2+-activated KCa3.1 potassium channels contribute to the slow afterhyperpolarization in L5 neocortical pyramidal neurons
    M. V. Roshchin
    V. N. Ierusalimsky
    P. M. Balaban
    E. S. Nikitin
    Scientific Reports, 10
  • [9] Ca2+-activated KCa3.1 potassium channels contribute to the slow afterhyperpolarization in L5 neocortical pyramidal neurons
    Roshchin, M., V
    Ierusalimsky, V. N.
    Balaban, P. M.
    Nikitin, E. S.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [10] Cancer-Associated Intermediate Conductance Ca2+-Activated K+ Channel KCa3.1
    Mohr, Corinna J.
    Steudel, Friederike A.
    Gross, Dominic
    Ruth, Peter
    Lo, Wing-Yee
    Hoppe, Reiner
    Schroth, Werner
    Brauch, Hiltrud
    Huber, Stephan M.
    Lukowski, Robert
    CANCERS, 2019, 11 (01):