MULTIPLE ERGODIC AVERAGES IN ABELIAN GROUPS AND KHINTCHINE TYPE RECURRENCE

被引:6
|
作者
Shalom, Or [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, Edmond J Safra Campus, IL-91904 Jerusalem, Israel
基金
欧洲研究理事会;
关键词
POLYNOMIAL-SEQUENCES; THEOREM; CONVERGENCE;
D O I
10.1090/tran/8558
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a countable abelian group. We study ergodic averages associated with configurations of the form {ag, bg, (a + b)g} for some a, b is an element of Z. Under some assumptions on G, we prove that the universal characteristic factor for these averages is a factor (Definition 1.15) of a 2-step nilpotent homogeneous space (Theorem 1.18). As an application we derive a Khintchine type recurrence result (Theorem 1.3). In particular, we prove that for every countable abelian group G, if a, b is an element of Z are such that aG, bG, (b - a)G and (a + b)G are of finite index in G, then for every E subset of G and epsilon > 0 the set {g is an element of G : d(E boolean AND E - ag boolean AND E - bg boolean AND E - (a + b)g) >= d(E)(4) - epsilon} is syndetic. This generalizes previous results for G = Z, G = F-p(omega) and G = circle plus(p is an element of P) F-p by Bergelson, Host and Kra [Invent. Math. 160 (2005), pp. 261- 303], Bergelson, Tao and Ziegler [J. Anal. Math. 127 (2015), pp. 329-378], and the author [Host-Kra theory for circle plus(p is an element of P) F-p-systems and multiple recurrence, arXiv:2101.04613.], respectively.
引用
收藏
页码:2729 / 2761
页数:33
相关论文
共 50 条
  • [2] Norm convergence of multiple ergodic averages on amenable groups
    Zorin-Kranich, Pavel
    JOURNAL D ANALYSE MATHEMATIQUE, 2016, 130 : 219 - 241
  • [3] Norm convergence of multiple ergodic averages on amenable groups
    Pavel Zorin-Kranich
    Journal d'Analyse Mathématique, 2016, 130 : 219 - 241
  • [4] NONCONVENTIONAL ERGODIC AVERAGES AND MULTIPLE RECURRENCE FOR VON NEUMANN DYNAMICAL SYSTEMS
    Austin, Tim
    Eisner, Tanja
    Tao, Terence
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 250 (01) : 1 - 60
  • [5] MULTIPLE ERGODIC AVERAGES FOR FLOWS AND AN APPLICATION
    Potts, Amanda
    ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (02) : 589 - 621
  • [6] MULTIPLE ERGODIC AVERAGES FOR TEMPERED FUNCTIONS
    Koutsogiannis, Andreas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (03) : 1177 - 1205
  • [7] MULTIPLE ERGODIC AVERAGES FOR VARIABLE POLYNOMIALS
    Koutsogiannis, Andreas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (09) : 4637 - 4668
  • [8] Multifractal analysis of multiple ergodic averages
    Fan, Aihua
    Schmeling, Jorg
    Wu, Meng
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (17-18) : 961 - 964
  • [9] Level sets of multiple ergodic averages
    Fan, Ai-Hua
    Liao, Lingmin
    Ma, Ji-Hua
    MONATSHEFTE FUR MATHEMATIK, 2012, 168 (01): : 17 - 26
  • [10] Level sets of multiple ergodic averages
    Ai-Hua Fan
    Lingmin Liao
    Ji-Hua Ma
    Monatshefte für Mathematik, 2012, 168 : 17 - 26