HEAT TRANSFER ENHANCEMENT CAUSED BY IMPINGING JETS OF Al2O3-WATER NANOFLUID ON AMICRO-PIN FIN ROUGHENED SURFACE UNDER CROSSFLOW CONDITIONS-A NUMERICAL STUDY

被引:10
|
作者
Allauddin, Usman [1 ]
Jamil, Tariq [1 ]
Shakaib, Muhammad [1 ]
Khan, H. M. Usman [1 ]
Mohiuddin, Rafay [1 ]
Saeed, M. Saad [1 ]
Ahsan, Haseeb [1 ]
Uddin, Naseem [2 ]
机构
[1] NEDUET, Mech Engn Dept, Karachi 75270, Pakistan
[2] Univ Teknol Brunei, BE-1410 Gadong, Brunei
关键词
multiple impinging jets; Al2O3-water nanofluid; confined jet; surface enlargement; micro-pin fins; THERMAL PERFORMANCE; RHEOLOGICAL BEHAVIOR; VISCOSITY; MICROCHANNEL; WATER; SUSPENSIONS; SINGLE; FLUIDS; PLATE;
D O I
10.1615/JEnhHeatTransf.2020033413
中图分类号
O414.1 [热力学];
学科分类号
摘要
Advanced electronic devices need ultrahigh performance cooling techniques. One such technique is jet impingement cooling. This study numerically investigates the thermal performance and flow behavior of an array of alumina oxide-water nanofluid impinging jet systems under crossflow. The Reynolds number of the jet array ranges between 4000 and 20,000 with a normalized distance between the jet's outlet and target plate (Z/D) equal to 3. The target wall is roughened with micro-pin fins for surface enlargement. All of the computations are done in ANSYS-FLUENT using the shear stress transport k-omega turbulence model. The paper reports numerical predictions matching satisfactorily well with the empirical data. However, more research in the context of turbulence models solely for turbulent nanofluid modeling is recommended for future studies. The influence of volumetric concentrations phi = 0%, 0.2%, 0.7%, 1.5%, and 3% of Al2O3 nanoparticles is explored. It is inferred from the simulations that the addition of the nanoparticles does not influence the velocity field with the simplified method used in the current work. It can also be inferred that the increasing values of the nanoparticle concentration would cause a rise in the nanofluid equivalent thermal conductivity leading to a reduction in the Nusselt number, whereas the average convective heat transfer coefficient would improve. About 72% improvement in the heat transfer coefficient (h) of the nanofluid is observed while the Nusselt number is reduced by about 30% at volumetric concentration phi = 3%. The addition of pin fins would help in further heat transfer improvement.
引用
收藏
页码:367 / 387
页数:21
相关论文
共 50 条
  • [1] NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER FOR AL2O3-WATER NANOFLUID IMPINGING JET
    Vaziel, Parisa
    Abouali, Omid
    ICNMM 2009, PTS A-B, 2009, : 977 - 984
  • [2] HEAT TRANSFER ENHANCEMENT IN MICROCHANNELS BY UTILIZING THE Al2O3-WATER NANOFLUID
    Dong, Shuangling
    Zheng, Liancun
    Zhang, Xinxin
    Zhang, Junhong
    HEAT TRANSFER RESEARCH, 2012, 43 (08) : 695 - 707
  • [3] NUMERICAL INVESTIGATION OF HEAT TRANSFER ENHANCEMENT WITH WINGS IN MICROCHANNELS USING Al2O3-WATER NANOFLUID
    Kumar, C. S. Amjith
    Arjun, J. B.
    Krishnan, Arun R.
    Rohit, R. S.
    Nandakrishnan, S. L.
    4TH THERMAL AND FLUIDS ENGINEERING CONFERENCE, ASTFE 2019, 2019,
  • [4] An experimental study of a confined and submerged impinging jet heat transfer using Al2O3-water nanofluid
    Nguyen, Cong Tam
    Galanis, Nicolas
    Polidori, Guillaume
    Fohanno, Stephane
    Popa, Catalin V.
    Le Bechec, Arnaud
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2009, 48 (02) : 401 - 411
  • [5] Al2O3-water nanofluid heat transfer enhancement of a twin impingement jet
    Al-Zuhairy, Reyadh Ch
    Kareem, Zaid S.
    Abdulhadi, Ali A.
    CASE STUDIES IN THERMAL ENGINEERING, 2020, 19
  • [6] NUMERICAL INVESTIGATION OF HEAT-TRANSFER ENHANCEMENT IN A DIMPLED DIVERGING MICROCHANNEL WITH AL2O3-WATER NANOFLUID
    Nandakrishnan, S. L.
    Deepu, M.
    Shine, S. R.
    JOURNAL OF ENHANCED HEAT TRANSFER, 2018, 25 (4-5) : 347 - 365
  • [7] Experimental Study on Boiling Heat Transfer of α-Al2O3-Water Nanofluid
    Qi, Cong
    He, Yurong
    Hu, Yanwei
    Jiang, Baocheng
    Luan, Tianzhu
    Ding, Yulong
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2013, 5 (08) : 895 - 901
  • [8] Heat transfer enhancement by utilizing Al2O3-Water nanofluid in a coiled agitated vessel
    Hussein, Abdulrazzaq Abdzaid
    Auda, Ahmed Chead
    Showard, Ansam F.
    Dawood, H. I.
    CASE STUDIES IN THERMAL ENGINEERING, 2025, 66
  • [9] Experimental Investigation of Impinging Jet Heat Transfer and Erosion Effect Using Al2O3-Water Nanofluid
    Nguyen, C. T.
    Laplante, G.
    Cury, M.
    Simon, G.
    FMA'08: PROCEEDINGS OF THE 6TH IASME/WSEAS INTERNATIONAL CONFERENCE ON FLUID MECHANICS AND AERODYNAMICS: NEW ASPECTS OF FLUID MECHANICS AND AERODYNAMICS, 2008, : 44 - +
  • [10] Turbulent heat transfer of Al2O3-water nanofluid inside helically corrugated tubes: Numerical study
    Darzi, A. A. Rabienataj
    Farhadi, Mousa
    Sedighi, Kurosh
    Aallahyari, Shahriar
    Delavar, Mojtaba Aghajani
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2013, 41 : 68 - 75