Casimir self-entropy of a spherical electromagnetic δ-function shell

被引:14
|
作者
Milton, Kimball A. [1 ]
Kalauni, Pushpa [1 ]
Parashar, Prachi [1 ,2 ]
Li, Yang [1 ]
机构
[1] Univ Oklahoma, HL Dodge Dept Phys & Astron, Norman, OK 73019 USA
[2] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, N-7491 Trondheim, Norway
关键词
D O I
10.1103/PhysRevD.96.085007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we continue our program of computing Casimir self-entropies of idealized electrical bodies. Here we consider an electromagnetic delta-function sphere ("semitransparent sphere") whose electric susceptibility has a transverse polarization with arbitrary strength. Dispersion is incorporated by a plasma-like model. In the strong-coupling limit, a perfectly conducting spherical shell is realized. We compute the entropy for both low and high temperatures. The transverse electric self-entropy is negative as expected, but the transverse magnetic self-entropy requires ultraviolet and infrared renormalization (subtraction), and, surprisingly, is only positive for sufficiently strong coupling. Results are robust under different regularization schemes. These rather surprising findings require further investigation.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Remarks on the Casimir self-entropy of a spherical electromagnetic δ-function shell
    Milton, Kimball A.
    Kalaum, Pushpa
    Parashar, Prachi
    Li, Yang
    [J]. PHYSICAL REVIEW D, 2019, 99 (04):
  • [2] Negativity of the Casimir Self-Entropy in Spherical Geometries
    Li, Yang
    Milton, Kimball A.
    Parashar, Prachi
    Hong, Lujun
    [J]. ENTROPY, 2021, 23 (02) : 1 - 11
  • [3] Casimir self-entropy of an electromagnetic thin sheet
    Li, Yang
    Milton, Kimball A.
    Kalauni, Pushpa
    Parashar, Prachi
    [J]. PHYSICAL REVIEW D, 2016, 94 (08)
  • [4] Casimir self-entropy of nanoparticles with classical polarizabilities: Electromagnetic field fluctuations
    Li, Yang
    Milton, Kimball A.
    Parashar, Prachi
    Kennedy, Gerard
    Pourtolami, Nima
    Guo, Xin
    [J]. PHYSICAL REVIEW D, 2022, 106 (03)
  • [5] Attractive electromagnetic Casimir stress on a spherical dielectric shell
    Graham, N.
    Quandt, M.
    Weigel, H.
    [J]. PHYSICS LETTERS B, 2013, 726 (4-5) : 846 - 849
  • [6] Casimir energy of a spherical shell
    Bowers, ME
    Hagen, CR
    [J]. PHYSICAL REVIEW D, 1999, 59 (02)
  • [7] VIBRATIONAL SELF-ENTROPY OF POINT DEFECTS IN CRYSTALS
    MAHANTY, J
    SACHDEV, M
    [J]. JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1970, 3 (04): : 773 - &
  • [8] CASIMIR SELF-STRESS ON A PERFECTLY CONDUCTING SPHERICAL-SHELL
    MILTON, KA
    DERAAD, LL
    SCHWINGER, J
    [J]. ANNALS OF PHYSICS, 1978, 115 (02) : 388 - 403
  • [9] The electromagnetic Casimir effect of spherical cavity
    HAN Jia-Guang
    [J]. Nuclear Science and Techniques, 2003, (02) : 104 - 106
  • [10] VIBRATIONAL SELF-ENTROPY OF A POINT DEFECT - APSEUDOMOLECULAR MODEL
    MAHANTY, J
    [J]. PHYSICS LETTERS A, 1969, A 29 (10) : 583 - &