An alternative approach to the analysis of longitudinal data via generalized estimating equations

被引:77
|
作者
Chaganty, NR [1 ]
机构
[1] OLD DOMINION UNIV, DEPT MATH & STAT, NORFOLK, VA 23529 USA
关键词
GEE; longitudinal data; positive definite; quasi-likelihood; repeated measures; generalized least squares;
D O I
10.1016/S0378-3758(96)00203-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The generalized estimating equations (GEE) introduced by Liang and Zeger (Biometrika 73 (1986) 13-22) have been widely used over the past decade to analyze longitudinal data. The method uses a generalized quasi-score function estimate for the regression coefficients, and moment estimates for the correlation parameters. Recently, Crowder (Biometrika 82 (1995) 407-410) has pointed out some pitfalls with the estimation of the correlation parameters in the GEE method. In this paper we present a new method for estimating the correlation parameters which overcomes those pitfalls. For some commonly assumed correlation structures, we obtain unique feasible estimates for the correlation parameters. Large sample properties of our estimates are also established. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:39 / 54
页数:16
相关论文
共 50 条