Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation in biologically-active iron columns

被引:20
|
作者
Oh, BT [1 ]
Alvarez, PJJ [1 ]
机构
[1] Univ Iowa, Dept Civil & Environm Engn, Iowa City, IA 52242 USA
来源
WATER AIR AND SOIL POLLUTION | 2002年 / 141卷 / 1-4期
关键词
bioaugmentation; explosive; permeable reactive barrier; RDX; zero-valent iron;
D O I
10.1023/A:1021315723654
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Flow-through columns were used to evaluate the efficacy of permeable reactive iron barriers to treat groundwater contamination by RDX. Three columns were packed with iron filings (Fe-0) between soil and sand layers, and were fed continuously with unlabeled plus C-14-labeled RDX to characterize its removal efficiency under different microbial conditions. One column was poison-sterilized to isolate chemical degradation processes, another was not poisoned to allow colonization of the Fe-0 layer by indigenous microorganisms, and a third column was amended with anaerobic sludge to evaluate the benefits of enhancing biodegradation through bioaugmentation. Extensive RDX removal (> 99%) occurred through the Fe-0 layer of all columns for more than one year, although C-14-label analysis indicated the presence of soluble byproducts such as methylenedinitramine. RDX byproducts accumulated to a lesser extent in biologically active columns, possibly due to enhanced mineralization by the cumulative action of microbial and chemical degradation processes. Denaturing gradient gel electrophoresis (DGGE) profiles and nucleotide sequencing revealed a predominance of Acetobacterium sp. in the iron layer of all columns after 95 days. Such homoacetogenic bacteria probably feed on hydrogen produced during Fe-0 corrosion and participate on the RDX degradation process. This notion was supported by batch experiments with a mixed homoacetogenic culture isolated from the bioaugmented column, which degraded RDX and produced acetate when H-2 was present. Overall, this work suggests that Fe-0 barriers can effectively intercept RDX plumes, and that treatment efficiency can be enhanced by biogeochemical interactions though bioaugmentation.
引用
收藏
页码:325 / 335
页数:11
相关论文
共 50 条
  • [1] Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (Rdx) Degradation in Biologically-Active Iron Columns
    Byung-Taek Oh
    Pedro J. J. Alvarez
    [J]. Water, Air, and Soil Pollution, 2002, 141 : 325 - 335
  • [2] Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum
    Leslie A. Sherburne
    Joshua D. Shrout
    Pedro J.J. Alvarez
    [J]. Biodegradation, 2005, 16 : 539 - 547
  • [3] Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum
    Sherburne, LA
    Shrout, JD
    Alvarez, PJJ
    [J]. BIODEGRADATION, 2005, 16 (06) : 539 - 547
  • [4] Lateral Transfer of Genes for Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) Degradation
    Andeer, Peter F.
    Stahl, David A.
    Bruce, Neil C.
    Strand, Stuart E.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (10) : 3258 - 3262
  • [5] Transformation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Permanganate
    Chokejaroenrat, Chanat
    Comfort, Steve D.
    Harris, Clifford E.
    Snow, Daniel D.
    Cassada, David
    Sakulthaew, Chainarong
    Satapanajaru, Tunlawit
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (08) : 3643 - 3649
  • [6] Genotoxicity assessment of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)
    Reddy, G
    Erexson, GL
    Cifone, MA
    Major, MA
    Leach, GJ
    [J]. INTERNATIONAL JOURNAL OF TOXICOLOGY, 2005, 24 (06) : 427 - 434
  • [7] Spectrophotometric analyses of hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX) in water
    Cong Shi
    Zhonghou Xu
    Benjamin LSmolinski
    Per MArienti
    Gregory OConnor
    Xiaoguang Meng
    [J]. Journal of Environmental Sciences., 2015, 33 (07) - 44
  • [8] Experimental Vapor Pressures of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and Hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX)
    Bikelyte, Greta
    Haertel, Martin A. C.
    Klapoetke, Thomas M.
    [J]. PROPELLANTS EXPLOSIVES PYROTECHNICS, 2020, 45 (10) : 1573 - 1579
  • [9] Spectrophotometric analyses of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in water
    Shi, Cong
    Xu, Zhonghou
    Smolinski, Benjamin L.
    Arienti, Per M.
    O'Connor, Gregory
    Meng, Xiaoguang
    [J]. JOURNAL OF ENVIRONMENTAL SCIENCES, 2015, 33 : 39 - 44
  • [10] Spectrophotometric analyses of hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX) in water
    Cong Shi
    Zhonghou Xu
    Benjamin L.Smolinski
    Per M.Arienti
    Gregory O'Connor
    Xiaoguang Meng
    [J]. Journal of Environmental Sciences, 2015, (07) : 39 - 44