Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications

被引:20
|
作者
Wu, J
Wei, XZ
Padture, NP [1 ]
Klemens, PG
Gell, M
García, E
Miranzo, P
Osendi, MI
机构
[1] Univ Connecticut, Inst Mat Sci, Dept Met & Mat Engn, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Mat Sci, Dept Phys, Storrs, CT 06269 USA
[3] CSIC, Inst Ceram & Vidrio, E-28049 Madrid, Spain
关键词
D O I
暂无
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Rare-earth zirconates have been identified as a class of low-thermal-conductivity ceramics for possible use in thermal barrier coatings (TBCs) for gas-turbine engine applications. To document and compare the thermal conductivities of important rare-earth zirconates, we have measured the thermal conductivities of the following hot-pressed ceramics: (i) Gd2Zr2O7 (pyrochlore phase), (ii) Gd2Zr2O7 (fluorite phase), (iii) Gd2.58Zr1.57O7 (fluorite phase), (iv) Nd2Zr2O7 (pyrochlore phase), and (v) Sm2Zr2O7 (pyrochlore phase). We have also measured the thermal conductivity of pressureless-sintered 7 wt% yttria-stabilized zirconia (7YSZ)-the commonly used composition in current TBCs. All rare-earth zirconates investigated here showed nearly identical thermal conductivities, all of which were similar to30% lower than the thermal conductivity of 7YSZ in the temperature range 25degrees-700degreesC. This finding is discussed qualitatively with reference to thermal-conductivity theory.
引用
收藏
页码:3031 / 3035
页数:5
相关论文
共 50 条
  • [1] Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications
    Padture, N.P. (nitin.padture@uconn.edu), 1600, American Ceramic Society (85):
  • [2] Design and experimental investigation of potential low-thermal-conductivity high-entropy rare-earth zirconates
    Liu, Lu
    Dong, Hongying
    Zhang, Peng
    Wang, Shaokun
    Qi, Haolei
    Ding, Mengyu
    Li, Zhefeng
    Bai, Yu
    Ma, Wen
    JOURNAL OF ADVANCED CERAMICS, 2024, 13 (08): : 1132 - 1142
  • [3] A novel low-thermal-conductivity plasma-sprayed thermal barrier coating controlled by large pores
    Arai, Masayuki
    Ochiai, Hiroya
    Suidzu, Tatsuo
    SURFACE & COATINGS TECHNOLOGY, 2016, 285 : 120 - 127
  • [4] Adhesive strength of new thermal barrier coatings of rare earth zirconates
    He, Limin
    Xu, Zhenhua
    Cao, Xueqiang
    Zhong, Xinghua
    Mu, Rende
    He, Shimei
    VACUUM, 2009, 83 (11) : 1388 - 1392
  • [5] Melting temperature, emissivity, and thermal conductivity of rare-earth silicates for thermal and environmental barrier coatings
    Schonfeld, Hunter B.
    Milich, Milena
    Miller, Cameron
    Doumaux, Laura
    Ridley, Mackenzie
    Pfeifer, Thomas
    Riffe, William
    Robba, Davide
    Vlahovic, Luka
    Boboridis, Konstantinos
    Konings, Rudy J. M.
    Chamberlain, Adam
    Opila, Elizabeth
    Hopkins, Patrick E.
    SCRIPTA MATERIALIA, 2025, 259
  • [6] Low-thermal-conductivity plasma-sprayed thermal barrier coatings with engineered microstructures
    Jadhav, Amol D.
    Padture, Nitin P.
    Jordan, Eric H.
    Gell, Maurice
    Miranzo, Pilar
    Fuller, Edwin R., Jr.
    ACTA MATERIALIA, 2006, 54 (12) : 3343 - 3349
  • [7] High-entropy rare-earth zirconate ceramics with low thermal conductivity for advanced thermal-barrier coatings
    Liu, Debao
    Shi, Baolu
    Geng, Liyan
    Wang, Yiguang
    Xu, Baosheng
    Chen, Yanfei
    JOURNAL OF ADVANCED CERAMICS, 2022, 11 (06) : 961 - 973
  • [8] Designing high-entropy rare-earth zirconates with tunable thermophysical properties for thermal barrier coatings
    Luo, Xuewei
    Huang, Ruiqi
    Xu, Chunhui
    Huang, Shuo
    Hou, Shuen
    Jin, Hongyun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 926
  • [9] Multicomponent rare-earth cerate and zirconocerate ceramics for thermal barrier coating materials
    Ren, Ke
    Wang, Qiankun
    Cao, Yejie
    Shao, Gang
    Wang, Yiguang
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (02) : 1720 - 1725
  • [10] Thermal conductivity of rare-earth nickel borocarbides
    Hennings, BD
    Rathnayaka, KDD
    Naugle, DG
    Canfield, PC
    PHYSICA C, 2000, 341 (341-348): : 753 - 754