Existence and homogenization of the Rayleigh-Benard problem

被引:0
|
作者
Birnir, B [1 ]
Svanstedt, N
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland
[3] Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
[4] Gothenburg Univ, S-41296 Gothenburg, Sweden
基金
美国国家科学基金会; 瑞典研究理事会;
关键词
D O I
10.2991/jnmp.2000.7.2.3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Navier-Stokes equation driven by heat conduction is studied. As a prototype we consider Rayleigh-Benard convection, in the Boussinesq approximation. Under a large aspect ratio assumption, which is the case in Rayleigh-Benard experiments with Prandtl number close to one, we prove the existence of a global strong solution to the 3D Navier-Stokes equation coupled with a heat equation, and the existence of a maximal B-attractor. A rigorous two-scale limit is obtained by homogenization theory. The mean velocity field is obtained by averaging the two-scale limit over the unit torus in the local variable.
引用
收藏
页码:136 / 169
页数:34
相关论文
共 50 条
  • [1] A Schwarz Method for a Rayleigh-Benard Problem
    Herrero, H.
    Pla, F.
    Ruiz-Ferrandez, M.
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (01) : 376 - 392
  • [2] The reactive Rayleigh-Benard problem with throughflow
    Bayliss, A
    Ma, TK
    Matkowsky, BJ
    Wahle, CW
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 61 (04) : 1103 - 1142
  • [3] On the Rayleigh-Benard problem in the continuum limit
    Manela, A
    Frankel, I
    PHYSICS OF FLUIDS, 2005, 17 (03) : 036101 - 1
  • [4] Boussinesq Approximation in the Rayleigh-Benard Problem
    Nadolin, K. A.
    Fluid Dynamics, 30 (05):
  • [5] Rayleigh-Benard problem for an anomalous fluid
    Ermolenko, A. N.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2007, 48 (02) : 166 - 175
  • [6] Rayleigh-Benard problem for an anomalous fluid
    A. N. Ermolenko
    Journal of Applied Mechanics and Technical Physics, 2007, 48 : 166 - 175
  • [7] RAYLEIGH-BENARD PROBLEM FOR THERMOMICROPOLAR FLUIDS
    Kalita, Piotr
    Lukaszewicz, Grzegorz
    Siemianowski, Jakub
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 52 (02) : 477 - 514
  • [8] Repulsion of eigenvalues in the Rayleigh-Benard problem
    Mizushima, J
    Nakamura, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (03) : 677 - 680
  • [9] On the Rayleigh-Benard problem in rarefied gases
    Manela, A
    Frankel, I
    RAREFIED GAS DYNAMICS, 2005, 762 : 264 - 269
  • [10] Existence theory and strong attractors for the Rayleigh-Benard problem with a large aspect ratio
    Birnir, B
    Svanstedt, N
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 10 (1-2) : 53 - 74