The Navier-Stokes equation driven by heat conduction is studied. As a prototype we consider Rayleigh-Benard convection, in the Boussinesq approximation. Under a large aspect ratio assumption, which is the case in Rayleigh-Benard experiments with Prandtl number close to one, we prove the existence of a global strong solution to the 3D Navier-Stokes equation coupled with a heat equation, and the existence of a maximal B-attractor. A rigorous two-scale limit is obtained by homogenization theory. The mean velocity field is obtained by averaging the two-scale limit over the unit torus in the local variable.
机构:
Univ Castilla La Mancha, Dept Matemat, Fac Ciencias & Tecnol Quim, E-13071 Ciudad Real, SpainUniv Castilla La Mancha, Dept Matemat, Fac Ciencias & Tecnol Quim, E-13071 Ciudad Real, Spain
Herrero, H.
Pla, F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Castilla La Mancha, Dept Matemat, Fac Ciencias & Tecnol Quim, E-13071 Ciudad Real, SpainUniv Castilla La Mancha, Dept Matemat, Fac Ciencias & Tecnol Quim, E-13071 Ciudad Real, Spain
Pla, F.
Ruiz-Ferrandez, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Almeria, Dept Informat, Escuela Super Ingn, Almeria 04120, SpainUniv Castilla La Mancha, Dept Matemat, Fac Ciencias & Tecnol Quim, E-13071 Ciudad Real, Spain
机构:
Jagiellonian Univ, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, PolandJagiellonian Univ, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
Kalita, Piotr
Lukaszewicz, Grzegorz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, PolandJagiellonian Univ, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
Lukaszewicz, Grzegorz
Siemianowski, Jakub
论文数: 0引用数: 0
h-index: 0
机构:
Nicolaus Copernicus Univ, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, PolandJagiellonian Univ, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland