Stochastic Lorenz model for periodically driven Rayleigh-Benard convection

被引:6
|
作者
Osenda, O [1 ]
Briozzo, CB [1 ]
Caceres, MO [1 ]
机构
[1] COMIS NACL ENERGIA ATOM, CTR ATOM BARILOCHE, RA-8400 SAN CARLOS BARILO, RIO NEGRO, ARGENTINA
关键词
D O I
10.1103/PhysRevE.55.R3824
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The order-disorder transition observed in periodically driven Rayleigh-Benard convection is studied by extending the generalized Lorenz model introduced by Ahlers, Hohenberg, and Lucke [Phys; Rev, A 32, 3493 (1985)] to include the effects of thermal noise. It is shown that this stochastic Lorenz model predicts. for thermal noise intensities, an order-disorder transition Line much closer to the experimental values than the prediction of previous models. This result makes clear that a dynamical description allowing for inertial effects is needed to account for the behavior of systems dynamically forced to cross an instability threshold.
引用
收藏
页码:R3824 / R3827
页数:4
相关论文
共 50 条
  • [1] Noise and pattern formation in periodically driven Rayleigh-Benard convection
    Osenda, Omar
    Briozzo, Carlos B.
    Caceres, Manuel O.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57 (01):
  • [2] Noise and pattern formation in periodically driven Rayleigh-Benard convection
    Osenda, O
    Briozzo, CB
    Caceres, MO
    PHYSICAL REVIEW E, 1998, 57 (01): : 412 - 427
  • [3] On the relation between Rayleigh-Benard convection and Lorenz system
    Chen, ZM
    Price, WG
    CHAOS SOLITONS & FRACTALS, 2006, 28 (02) : 571 - 578
  • [4] Inertial effects on recurrent pattern formation in periodically driven Rayleigh-Benard convection
    Osenda, O
    Briozzo, CB
    Caceres, MO
    PHYSICA A, 1998, 257 (1-4): : 325 - 328
  • [5] External noise in periodically forced Rayleigh-Benard convection
    Osenda, O
    Briozzo, CB
    Caceres, MO
    PHYSICAL REVIEW E, 1996, 54 (06): : 6944 - 6947
  • [6] HEXAGONS AND ROLLS IN PERIODICALLY MODULATED RAYLEIGH-BENARD CONVECTION
    HOHENBERG, PC
    SWIFT, JB
    PHYSICAL REVIEW A, 1987, 35 (09): : 3855 - 3873
  • [7] Stochastic bifurcation analysis of Rayleigh-Benard convection
    Venturi, Daniele
    Wan, Xiaoliang
    Karniadakis, George Em
    JOURNAL OF FLUID MECHANICS, 2010, 650 : 391 - 413
  • [8] LORENZ MODEL FOR THE ROTATING RAYLEIGH-BENARD PROBLEM
    BHATTACHARJEE, JK
    MCKANE, AJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (10): : L555 - L558
  • [9] Melting driven by rotating Rayleigh-Benard convection
    Ravichandran, S.
    Wettlaufer, J. S.
    JOURNAL OF FLUID MECHANICS, 2021, 916
  • [10] RAYLEIGH-BENARD CONVECTION
    BERGE, P
    DUBOIS, M
    CONTEMPORARY PHYSICS, 1984, 25 (06) : 535 - 582