On orbit closures of symmetric subgroups in flag varieties

被引:20
|
作者
Brion, M [1 ]
Helminck, AG
机构
[1] CNRS, UMR 5582, Inst Fourier, Dept Math, F-38402 St Martin Dheres, France
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2000年 / 52卷 / 02期
关键词
D O I
10.4153/CJM-2000-012-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study K-orbits in G/P where G is a complex connected reductive group, P subset of or equal to G is a parabolic subgroup, and K subset of or equal to G is the fixed point subgroup of an involutive automorphism theta. Generalizing work of Springer, we parametrize the (finite) orbit set K \ G/P and we determine the isotropy groups. As a consequence, we describe the closed (resp. affine) orbits in terms of theta-stable (resp. theta-split) parabolic subgroups. We also describe the decomposition of any (K, P)-double coset in G into (K, B)-double cosets, where B subset of or equal to P is a Borel subgroup. Finally for certain K-orbit closures X subset of or equal to G/B, and for any homogeneous line bundle L on G/B having nonzero global sections. we show that the restriction map res(x): H-0(G/B, L) --> H-0(X, L) is surjective and that H-i(X, L) = 0 for i greater than or equal to 1. Moreover, we describe the R-module H-0(X, L). This gives information on the restriction to K of the simple G-module H-0(G/B, L). Our construction is a geometric analogue of Vogan and Sepanski's approach to extremal K-types.
引用
收藏
页码:265 / 292
页数:28
相关论文
共 50 条
  • [1] On orbit closures of spherical subgroups in flag varieties
    Brion, M
    COMMENTARII MATHEMATICI HELVETICI, 2001, 76 (02) : 263 - 299
  • [2] On Frobenius splitting of orbit closures of spherical subgroups in flag varieties
    Xuhua He
    Jesper Funch Thomsen
    Transformation Groups, 2012, 17 : 691 - 715
  • [3] On Frobenius splitting of orbit closures of spherical subgroups in flag varieties
    He, Xuhua
    Thomsen, Jesper Funch
    TRANSFORMATION GROUPS, 2012, 17 (03) : 691 - 715
  • [4] POLYNOMIALS FOR SYMMETRIC ORBIT CLOSURES IN THE FLAG VARIETY
    Wyser B.
    Yong A.
    Transformation Groups, 2017, 22 (1) : 267 - 290
  • [5] POLYNOMIALS FOR SYMMETRIC ORBIT CLOSURES IN THE FLAG VARIETY
    Wyser, B.
    Yong, A.
    TRANSFORMATION GROUPS, 2017, 22 (01) : 267 - 290
  • [6] Torus orbit closures in flag varieties and retractions on Weyl groups
    Lee, Eunjeong
    Masuda, Mikiya
    Park, Seonjeong
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2022, 33 (04)
  • [7] Polynomials for orbit closures in the flag variety
    Wyser, Benjamin J.
    Yong, Alexander
    SELECTA MATHEMATICA-NEW SERIES, 2014, 20 (04): : 1083 - 1110
  • [8] On the Classification of Orbits of Symmetric Subgroups Acting on Flag Varieties of SL(2, k)
    Beun, Stacy L.
    Helminck, Aloysius G.
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (04) : 1334 - 1352
  • [9] Regular orbit closures in module varieties
    Loc, Nguyen Quang
    Zwara, Grzegorz
    OSAKA JOURNAL OF MATHEMATICS, 2007, 44 (04) : 945 - 954
  • [10] Unibranch orbit closures in module varieties
    Zwara, G
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2002, 35 (06): : 877 - 895