Rotation-Invariant Point Convolution With Multiple Equivariant Alignments

被引:7
|
作者
Thomas, Hugues [1 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
关键词
D O I
10.1109/3DV50981.2020.00060
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent attempts at introducing rotation invariance or equivariance in 3D deep learning approaches have shown promising results, but these methods still struggle to reach the performances of standard 3D neural networks. In this work we study the relation between equivariance and invariance in 3D point convolutions. We show that using rotation-equivariant alignments, it is possible to make any convolutional layer rotation-invariant. Furthermore, we improve this simple alignment procedure by using the alignment themselves as features in the convolution, and by combining multiple alignments together. With this core layer, we design rotation-invariant architectures which improve state-of-the-art results in both object classification and semantic segmentation and reduces the gap between rotationinvariant and standard 3D deep learning approaches.
引用
收藏
页码:504 / 513
页数:10
相关论文
共 50 条
  • [1] Rotation-Invariant Convolution With Point Sort and Curvature Radius for Point Cloud Classification and Segmentation
    Shen, Zhao
    Jia, Xin
    Zhang, Jinglei
    IEEE ACCESS, 2025, 13 : 10432 - 10446
  • [2] Rotation-Invariant Transformer for Point Cloud Matching
    Yu, Hao
    Qin, Zheng
    Hou, Ji
    Saleh, Mahdi
    Li, Dongsheng
    Busam, Benjamin
    Ilic, Slobodan
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 5384 - 5393
  • [3] Rotation-Invariant Descriptors Learned with Circulant Convolution Neural Networks
    Lin, Wenwei
    Zhong, Chonghao
    Sun, Xunpei
    Meng, Haitao
    Chen, Gang
    Hu, Biao
    Gu, Zonghua
    2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 415 - 422
  • [4] Rotation-Invariant Convolution Networks with Hexagon-Based Kernels
    Tang, Yiping
    Hatano, Kohei
    Takimoto, Eiji
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107 (02) : 220 - 228
  • [5] Classification of rotation-invariant biomedical images using equivariant neural networks
    Bernander, Karl Bengtsson
    Sintorn, Ida-Maria
    Strand, Robin
    Nystrom, Ingela
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [6] Cy-CNN: cylinder convolution based rotation-invariant neural network for point cloud registration
    Zhao, Hengwang
    Liang, Zhidong
    He, Yuesheng
    Wang, Chunxiang
    Yang, Ming
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (05)
  • [7] Cy-CNN: cylinder convolution based rotation-invariant neural network for point cloud registration
    Hengwang ZHAO
    Zhidong LIANG
    Yuesheng HE
    Chunxiang WANG
    Ming YANG
    Science China(Information Sciences), 2023, 66 (05) : 73 - 87
  • [8] A Rotation-Invariant Framework for Deep Point Cloud Analysis
    Li, Xianzhi
    Li, Ruihui
    Chen, Guangyong
    Fu, Chi-Wing
    Cohen-Or, Daniel
    Heng, Pheng-Ann
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (12) : 4503 - 4514
  • [9] Rotation-invariant neoperceptron
    Fasel, Beat
    Gatica-Perez, Daniel
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 336 - +
  • [10] Rotation-invariant neocognitron
    Satoh, Shunji
    Kuroiwa, Jousuke
    Aso, Hirotomo
    Miyake, Shogo
    Systems and Computers in Japan, 1999, 30 (04) : 31 - 40