Partial regularity for higher order variational problems under anisotropic growth conditions

被引:0
|
作者
Apushkinskaya, Darya [1 ]
Fuchs, Martin [1 ]
机构
[1] Univ Saarland, Fachbereich Math 61, D-66041 Saarbrucken, Germany
关键词
variational problems of higher order; nonstandard growth; regularity of minimizers;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a partial regularity result for local minimizers u: R-n superset of Omega -> R-M of the variational integral J(u, Omega) = integral(Omega) f (del(k)(u)) dx, where k is any integer and f is a strictly convex integrand of anisotropic (p, q)-growth with exponents satisfying the condition q < p(1 + (2)/(n)). This is some extension for the case n >= 3 of the regularity theorem obtained in [BF2].
引用
收藏
页码:199 / 214
页数:16
相关论文
共 50 条