On Ramsey minimal graphs

被引:12
|
作者
Rodl, V. [1 ]
Siggers, M. [2 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[2] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
基金
美国国家科学基金会;
关键词
Ramsey-minimal; Ramsey infinite; sender;
D O I
10.1137/050647116
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is r-Ramsey-minimal with respect to a graph H if every r-coloring of the edges of G yields a monochromatic copy of H, but the same is not true for any proper subgraph of G. In this paper we show that for any integer k >= 3 and r >= 2, there exists a constant c > 1 such that for large enough n, there exist at least c(n2) nonisomorphic graphs on at most n vertices, each of which is r-Ramsey-minimal with respect to the complete graph K(k). Furthermore, in the case r = 2, we give an asymmetric version of the above result.
引用
收藏
页码:467 / 488
页数:22
相关论文
共 50 条
  • [1] On Ramsey -Minimal Graphs
    Wijaya, Kristiana
    Baskoro, Edy Tri
    Assiyatun, Hilda
    Suprijanto, Djoko
    [J]. GRAPHS AND COMBINATORICS, 2017, 33 (01) : 233 - 243
  • [2] On Ramsey minimal graphs
    Borowiecki, M
    Haluszczak, M
    Sidorowicz, E
    [J]. DISCRETE MATHEMATICS, 2004, 286 (1-2) : 37 - 43
  • [3] Minimal ordered Ramsey graphs
    Rollin, Jonathan
    [J]. DISCRETE MATHEMATICS, 2020, 343 (10)
  • [4] RAMSEY MINIMAL GRAPHS FOR FORESTS
    FAUDREE, R
    [J]. ARS COMBINATORIA, 1991, 31 : 117 - 124
  • [5] On minimal Ramsey graphs and Ramsey equivalence in multiple colours
    Clemens, Dennis
    Liebenau, Anita
    Reding, Damian
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (04): : 537 - 554
  • [6] RAMSEY-MINIMAL GRAPHS FOR FORESTS
    BURR, SA
    ERDOS, P
    FAUDREE, RJ
    ROUSSEAU, CC
    SCHELP, RH
    [J]. DISCRETE MATHEMATICS, 1982, 38 (01) : 23 - 32
  • [7] On the Minimum Degree of Minimal Ramsey Graphs
    Szabo, Tibor
    Zumstein, Philipp
    Zuercher, Stefanie
    [J]. JOURNAL OF GRAPH THEORY, 2010, 64 (02) : 150 - 164
  • [8] On Ramsey-minimal infinite graphs
    Barrett, Jordan Mitchell
    Vito, Valentino
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (01): : 1 - 14
  • [9] On Ramsey Minimal Graphs for the Pair Paths
    Rahmadani, Desi
    Baskoro, Edy Tri
    Assiyatun, Hilda
    [J]. 2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY, 2015, 74 : 15 - 20
  • [10] Minimal vertex Ramsey graphs and minimal forbidden subgraphs
    Borowiecka-Olszewska, M
    Drgas-Burchardt, E
    Mihók, P
    [J]. DISCRETE MATHEMATICS, 2004, 286 (1-2) : 31 - 36