A Multi Objective Evolutionary Algorithm based on Decomposition for a Flow Shop Scheduling Problem in the Context of Industry 4.0

被引:7
|
作者
Rossit, Diego Gabriel [1 ,2 ,3 ]
Nesmachnow, Sergio [4 ]
Rossit, Daniel Alejandro [1 ,2 ,3 ]
机构
[1] Univ Nacl Sur, Dept Engn, Bahia Blanca, Buenos Aires, Argentina
[2] Univ Nacl Sur, INMABB, Bahia Blanca, Buenos Aires, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Bahia Blanca, Buenos Aires, Argentina
[4] Univ Republica, Montevideo, Uruguay
关键词
Industry; 4.0; Flow shop; Missing operation; Evolutionary algorithms; Multi objective optimization; Makespan; Total tardiness; NON-PERMUTATION SCHEDULES; MANUFACTURING SYSTEMS; PERFORMANCE; MOEA/D; RULES;
D O I
10.33889/IJMEMS.2022.7.4.029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Under the novel paradigm of Industry 4.0, missing operations have arisen as a result of the increasingly customization of the industrial products in which customers have an extended control over the characteristics of the final products. As a result, this has completely modified the scheduling and planning management of jobs in modern factories. As a contribution in this area, this article presents a multi objective evolutionary approach based on decomposition for efficiently addressing the multi objective flow shop problem with missing operations, a relevant problem in modern industry. Tests performed over a representative set of instances show the competitiveness of the proposed approach when compared with other baseline metaheuristics.
引用
收藏
页码:433 / 454
页数:22
相关论文
共 50 条
  • [1] Hybrid flow shop scheduling problem based on evolutionary multi-objective algorithm
    School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
    Nanjing Li Gong Daxue Xuebao, 2006, 3 (327-331):
  • [2] A hybrid multi-objective evolutionary algorithm based on decomposition for green permutation flow-shop scheduling problem
    Luo, Cong
    Gong, Wen-Yin
    Kongzhi yu Juece/Control and Decision, 2024, 39 (08): : 2737 - 2745
  • [3] Fast Multi-objective Hybrid Evolutionary Algorithm for Flow Shop Scheduling Problem
    Zhang, Wenqiang
    Lu, Jiaming
    Zhang, Hongmei
    Wang, Chunxiao
    Gen, Mitsuo
    PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, 2017, 502 : 383 - 392
  • [4] Research on manufacturing flow shop scheduling method based on multi-objective evolutionary algorithm
    Yu, Xiaowen
    Li, Meng
    Ding, Ning
    Zhang, Liqing
    Academic Journal of Manufacturing Engineering, 2019, 17 (03): : 153 - 158
  • [5] An improved multi-objective evolutionary algorithm based on decomposition for bi-objective fuzzy flexible job-shop scheduling problem
    Li R.
    Gong W.-Y.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2022, 39 (01): : 31 - 40
  • [6] Multi-objective evolutionary algorithm based on multiple neighborhoods local search for multi-objective distributed hybrid flow shop scheduling problem
    Shao, Weishi
    Shao, Zhongshi
    Pi, Dechang
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 183
  • [7] A Collaborative Evolutionary Algorithm for Multi-objective Flexible Job Shop Scheduling Problem
    Li, X. Y.
    Gao, L.
    2011 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2011, : 997 - 1002
  • [8] An improved multi-objective evolutionary algorithm based on decomposition for solving re-entrant hybrid flow shop scheduling problem with batch processing machines
    Wu, Xiuli
    Cao, Zheng
    COMPUTERS & INDUSTRIAL ENGINEERING, 2022, 169
  • [9] Dynamic Multi-Objective Evolutionary Algorithm Based on Decomposition for Test Task Scheduling Problem
    Lu, Hui
    Xu, Xin
    Zhang, Mengmeng
    Yin, Lijuan
    2015 SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2015, : 11 - 18
  • [10] Multi-Objective Job Shop Scheduling Based on Multiagent Evolutionary Algorithm
    Duan, Xinrui
    Liu, Jing
    Zhang, Li
    Jiao, Licheng
    SIMULATED EVOLUTION AND LEARNING, 2010, 6457 : 543 - 552