An investigation on near wall transport characteristics in an adiabatic upward gas-liquid two-phase slug flow

被引:13
|
作者
Zheng, Donghong [1 ]
Che, Defu [1 ]
机构
[1] Xian Jiaotong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
关键词
Gas-liquid slug flow; Wall shear stress; Mass transfer coefficient; Flow induced corrosion;
D O I
10.1007/s00231-006-0193-8
中图分类号
O414.1 [热力学];
学科分类号
摘要
The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas-liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10(-3) m/s, and the wall shear stress below 10(3) Pa. It can be concluded that the alternate wall shear stress due to upward gas-liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.
引用
收藏
页码:1019 / 1036
页数:18
相关论文
共 50 条
  • [1] An investigation on near wall transport characteristics in an adiabatic upward gas–liquid two-phase slug flow
    Donghong Zheng
    Defu Che
    Heat and Mass Transfer, 2007, 43 : 1019 - 1036
  • [2] Fluctuation characteristics of gas-liquid two-phase slug flow in horizontal pipeline
    Luo, X. M.
    He, L. M.
    Lu, Y. L.
    6TH INTERNATIONAL SYMPOSIUM ON MULTIPHASE FLOW, HEAT MASS TRANSFER AND ENERGY CONVERSION, 2010, 1207 : 162 - 171
  • [3] Fluctuation characteristics of gas-liquid two-phase slug flow in horizontal pipeline
    Luo, Xiaoming
    He, Limin
    Lu, Yuling
    Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2008, 59 (11): : 2781 - 2786
  • [4] Characteristics on gas-liquid two-phase flow in large inclination upward pipe
    Wang, Quan
    Li, Yuxing
    Hu, Qihui
    Wang, Lin
    Liu, Chang
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2017, 36 (08): : 2822 - 2829
  • [5] Experimental investigation on gas-liquid two-phase slug flow enhanced carbon dioxide corrosion in vertical upward pipeline
    Zheng, Donghong
    Che, Defu
    Liu, Yinhe
    CORROSION SCIENCE, 2008, 50 (11) : 3005 - 3020
  • [6] Structure and void fraction in a liquid slug for gas-liquid two-phase slug flow
    Mori, Koji
    Miwa, Megumi
    Heat Transfer - Asian Research, 2002, 31 (04): : 257 - 271
  • [7] Flow characteristics of gas-liquid adiabatic and boiling annular two-phase flows
    Ju, Peng
    Hibiki, Takashi
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 210
  • [8] A study on wall mass transfer characteristics in a gas-liquid inclined upward slug flow
    State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
    Kung Cheng Je Wu Li Hsueh Pao, 2009, 9 (1505-1508): : 1505 - 1508
  • [9] Effect of surface wettability on flow characteristics in vertical upward gas-liquid two-phase flow
    Fuculty of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto-ku, Tokyo, 135-8533, Japan
    Nihon Kikai Gakkai Ronbunshu, B, 2007, 7 (1502-1509): : 1502 - 1509
  • [10] FLOW CHARACTERISTICS OF ADIABATIC GAS-LIQUID TWO-PHASE FLOW IN A HORIZONTAL FLAT RECTANGULAR MICROCHANNEL
    Ide, Hideo
    Satonaka, Kentaro
    Fukano, Tohru
    PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS AND MINICHANNELS 2011, VOL 2, 2012, : 385 - +