Molecular tuning of fast gating in pentameric ligand-gated ion channels

被引:97
|
作者
Grutter, T
de Carvalho, LP
Dufresne, V
Taly, A
Edelstein, SJ
Changeux, JP
机构
[1] Inst Pasteur, Lab Recepteurs & Cognit, F-75724 Paris, France
[2] Univ Geneva, Dept Biochem, CH-1211 Geneva, Switzerland
关键词
allosteric proteins; chimeric receptor; Cys-loop receptor; transition state;
D O I
10.1073/pnas.0509024102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neurotransmitters such as acetylcholine (ACh) and glycine mediate fast synaptic neurotransmission by activating pentameric ligand-gated ion channels (LGICs). These receptors are allosteric transmembrane proteins that rapidly convert chemical messages into electrical signals. Neurotransmitters activate LGICs by interacting with an extracellular agonist-binding domain (ECD), triggering a tertiary/quaternary conformational change in the protein that results in the fast opening of an ion pore domain (IPD). However, the molecular mechanism that determines the fast opening of LGICs remains elusive. Here, we show by combining whole-cell and single-channel recordings of recombinant chimeras between the ECD of alpha 7 nicotinic receptor (nAChR) and the IPD of the glycine receptor (GlyR) that only two GlyR amino acid residues of loop 7 (Cys-loop) from the ECD and at most five a7 nAChR amino acid residues of the M2-M3 loop (2-3L) from the IPD control the fast activation rates of the alpha 7/Gly chimera and WT GlyR. Mutual interactions of these residues at a critical pivot point between the agonist-binding site and the ion channel fine-tune the intrinsic opening and closing rates of the receptor through stabilization of the transition state of activation. These data provide a structural basis for the fast opening of pentameric LGICs.
引用
收藏
页码:18207 / 18212
页数:6
相关论文
共 50 条
  • [1] Gating Transition of Pentameric Ligand-Gated Ion Channels
    Zhu, Fangqiang
    Hummer, Gerhard
    [J]. BIOPHYSICAL JOURNAL, 2009, 97 (09) : 2456 - 2463
  • [2] A gating mechanism of pentameric ligand-gated ion channels
    Calimet, Nicolas
    Simoes, Manuel
    Changeux, Jean-Pierre
    Karplus, Martin
    Taly, Antoine
    Cecchini, Marco
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (42) : E3987 - E3996
  • [3] Characterization of Gating Mechanisms in Prokaryotic Pentameric Ligand-Gated Ion Channels
    Velisetty, Phanindra
    Chakrapani, Sudha
    [J]. BIOPHYSICAL JOURNAL, 2012, 102 (03) : 114A - 114A
  • [4] Gating of Pentameric Ligand-Gated Ion Channels: Structural Insights and Ambiguities
    daCosta, Corrie J. B.
    Baenziger, John E.
    [J]. STRUCTURE, 2013, 21 (08) : 1271 - 1283
  • [5] The Structural basis for ion conduction and gating in pentameric ligand-gated ion channels
    Dutzler, R.
    [J]. FEBS JOURNAL, 2010, 277 : 11 - 11
  • [6] The Evolution of Pentameric Ligand-Gated Ion Channels
    Dent, Joseph A.
    [J]. INSECT NICOTINIC ACETYLCHOLINE RECEPTORS, 2010, 683 : 11 - 23
  • [7] Allosteric Gating Determinants in the Transmembrane Domain of Pentameric Ligand-Gated Ion Channels
    Howard, Rebecca J.
    Zhuang, Yuxuan
    Heusser, Stephanie A.
    Bergh, Cathrine C.
    Rovsnik, Urska
    Orellana, Laura
    Lindahl, Erik
    [J]. BIOPHYSICAL JOURNAL, 2020, 118 (03) : 584A - 584A
  • [8] Molecular Modeling of Charge Selectivity in Pentameric Ligand-Gated Ion Channels
    Harpole, Tyler J.
    Grosman, Claudio
    [J]. BIOPHYSICAL JOURNAL, 2016, 110 (03) : 602A - 602A
  • [9] The Role of Intracellular Linkers in Gating and Desensitization of Human Pentameric Ligand-Gated Ion Channels
    Papke, David
    Grosman, Claudio
    [J]. JOURNAL OF NEUROSCIENCE, 2014, 34 (21): : 7238 - 7252
  • [10] Molecular Mingling: Multimodal Predictions of Ligand Promiscuity in Pentameric Ligand-Gated Ion Channels
    Koniuszewski, Filip
    Vogel, Florian D.
    Bampali, Konstantina
    Fabjan, Jure
    Seidel, Thomas
    Scholze, Petra
    Schmiedhofer, Philip B.
    Langer, Thierry
    Ernst, Margot
    [J]. FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9