Is Sentiment a Property of Synsets? Evaluating Resources for Sentiment Classification using Machine Learning

被引:0
|
作者
Wawer, Aleksander [1 ]
机构
[1] Polish Acad Sci, Inst Comp Sci, PL-01237 Warsaw, Poland
关键词
D O I
暂无
中图分类号
H [语言、文字];
学科分类号
05 ;
摘要
Existing approaches to classifying documents by sentiment include machine learning with features created from n-grams and part of speech. This paper explores a different approach and examines performance of one selected machine learning algorithm, Support Vector Machines, with features computed using existing lexical resources. Special attention has been paid to fine tuning of the algorithm regarding number of features. The immediate purpose of this experiment is to evaluate lexical and sentiment resources in document-level sentiment classification task. Results described in the paper are also useful to indicate how lexicon design, different language dimensions and semantic categories contribute to document-level sentiment recognition. In a less direct way (through the examination of evaluated resources), the experiment analyzes adequacy of lexemes, word senses and synsets as different possible layers for ascribing sentiment, or as candidates for sentiment carriers. The proposed approach of machine learning word category frequencies instead of n-grams and part of speech features can potentially exhibit improvements in domain independency, but this hypothesis has to be verified in future works.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Classification of Sentiment Analysis Using Machine Learning
    Parikh, Satyen M.
    Shah, Mitali K.
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, 2020, 46 : 76 - 86
  • [2] Sentiment Classification for Film Reviews in Gujarati Text Using Machine Learning and Sentiment Lexicons
    Shah, Parita
    Swaminarayan, Priya
    Patel, Maitri
    JOURNAL OF ICT RESEARCH AND APPLICATIONS, 2022, 17 (01) : 1 - 16
  • [3] Evaluating deep learning models for sentiment classification
    Karakus, Betul Ay
    Talo, Muhammed
    Hallac, Ibrahim Riza
    Aydin, Galip
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2018, 30 (21):
  • [4] Sentiment Classification Using Machine Learning Techniques with Syntax Features
    Zou, Huang
    Tang, Xinhuai
    Xie, Bin
    Liu, Bing
    2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2015, : 175 - 179
  • [5] Dimensionality Reduction for Sentiment Classification using Machine Learning Classifiers
    Islam, Mazharul
    Anjum, Aftab
    Ahsan, Tanveer
    Wang, Lin
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 3097 - 3103
  • [6] Thumbs up? Sentiment classification using machine learning techniques
    Pang, B
    Lee, L
    Vaithyanathan, S
    PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, 2002, : 79 - 86
  • [7] Sentiment Analysis and Classification of Restaurant Reviews using Machine Learning
    Zahoor, Kanwal
    Bawany, Narmeen Zakaria
    Hamid, Soomaiya
    2020 21ST INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT), 2020,
  • [8] Evaluating sentiment analysis for Arabic Tweets using machine learning and deep learning
    Alshutayri, Areej
    Alamoudi, Huda
    Alshehri, Boushra
    Aldhahri, Eman
    Alsaleh, Iqbal
    Aljojo, Nahla
    Alghoson, Abdullah
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2022, 32 (04): : 7 - 18
  • [9] Sentiment classification on product reviews using machine learning and deep learning techniques
    Singh, Neha
    Jaiswal, Umesh Chandra
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (12) : 5726 - 5741
  • [10] Onto-based sentiment classification using Machine Learning Techniques
    Saranya, K.
    Jayanthy, S.
    2017 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION, EMBEDDED AND COMMUNICATION SYSTEMS (ICIIECS), 2017,