Implicit a posteriori error estimation using patch recovery techniques

被引:3
|
作者
Horvath, Tamas L. [1 ,2 ]
Izsak, Ferenc [2 ,3 ]
机构
[1] Szechenyi Univ, Dept Math & Computat Sci, H-9026 Gyor, Hungary
[2] Eotvos Lorand Univ, Dept Appl Anal & Computat Math, H-1117 Budapest, Hungary
[3] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
来源
关键词
Implicit a posteriori error estimation; Finite element method; Gradient recovery; FINITE-ELEMENT-METHOD; MAXWELL EQUATIONS; UNSTRUCTURED GRIDS; PART I; SUPERCONVERGENCE;
D O I
10.2478/s11533-011-0119-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop implicit a posteriori error estimators for elliptic boundary value problems. Local problems are formulated for the error and the corresponding Neumann type boundary conditions are approximated using a new family of gradient averaging procedures. Convergence properties of the implicit error estimator are discussed independently of residual type error estimators, and this gives a freedom in the choice of boundary conditions. General assumptions are elaborated for the gradient averaging which define a family of implicit a posteriori error estimators. We will demonstrate the performance and the favor of the method through numerical experiments.
引用
收藏
页码:55 / 72
页数:18
相关论文
共 50 条