Qsun: an open-source platform towards practical quantum machine learning applications

被引:4
|
作者
Quoc Chuong Nguyen [1 ]
Le Bin Ho [2 ,3 ]
Lan Nguyen Tran [2 ]
Nguyen, Hung Q. [4 ]
机构
[1] Vietnamese German Univ, Ho Chi Minh City 70000, Vietnam
[2] Vietnam Acad Sci & Technol, Natl Inst Appl Mech & Informat, Ho Chi Minh City Inst Phys, Ho Chi Minh City 70000, Vietnam
[3] Tohoku Univ, Res Inst Elect Commun, Sendai, Miyagi 9808577, Japan
[4] Vietnam Natl Univ, VNU Univ Sci, Nano & Energy Ctr, Hanoi 120401, Vietnam
来源
关键词
quantum virtual machine; quantum machine learning; quantum differentiable programming; quantum linear regression; quantum neural network;
D O I
10.1088/2632-2153/ac5997
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently, quantum hardware is restrained by noises and qubit numbers. Thus, a quantum virtual machine (QVM) that simulates operations of a quantum computer on classical computers is a vital tool for developing and testing quantum algorithms before deploying them on real quantum computers. Various variational quantum algorithms (VQAs) have been proposed and tested on QVMs to surpass the limitations of quantum hardware. Our goal is to exploit further the VQAs towards practical applications of quantum machine learning (QML) using state-of-the-art quantum computers. In this paper, we first introduce a QVM named Qsun, whose operation is underlined by quantum state wavefunctions. The platform provides native tools supporting VQAs. Especially using the parameter-shift rule, we implement quantum differentiable programming essential for gradient-based optimization. We then report two tests representative of QML: quantum linear regression and quantum neural network.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] pyStudio: An Open-Source Machine Learning Platform
    Gomicia-Murcia, Enrique
    Bordel Sanchez, Borja
    Souissi, Riad
    AL-Qurishi, Muhammad
    [J]. PROCEEDINGS OF THE 2023 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2023, 2023, : 436 - 440
  • [2] Towards Discovering Quantum-Threats for Applications Using Open-Source Libraries
    Ye, Xiaodong
    Tan, Teik Guan
    Zhou, Jianying
    [J]. APPLIED CRYPTOGRAPHY AND NETWORK SECURITY WORKSHOPS, PT I, ACNS 2024-AIBLOCK 2024, AIHWS 2024, AIOTS 2024, SCI 2024, AAC 2024, SIMLA 2024, LLE 2024, AND CIMSS 2024, 2024, 14586 : 283 - 302
  • [3] Open-Source Machine Learning in Computational Chemistry
    Hagg, Alexander
    Kirschner, Karl N.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (15) : 4505 - 4532
  • [4] CalcUS: An Open-Source Quantum Chemistry Web Platform
    Robidas, Raphael
    Legault, Claude Y.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (05) : 1147 - 1153
  • [5] CODA: an open-source platform for federated analysis and machine learning on distributed healthcare data
    Mullie, Louis
    Afilalo, Jonathan
    Archambault, Patrick
    Bouchakri, Rima
    Brown, Kip
    Buckeridge, David L.
    Cavayas, Yiorgos Alexandros
    Turgeon, Alexis F.
    Martineau, Denis
    Lamontagne, Francois
    Lebrasseur, Martine
    Lemieux, Renald
    Li, Jeffrey
    Sauthier, Michael
    St-Onge, Pascal
    Tang, An
    Witteman, William
    Chasse, Michael
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (03) : 651 - 665
  • [6] SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence
    Fang, Wei
    Chen, Yanqi
    Ding, Jianhao
    Yu, Zhaofei
    Masquelier, Timothee
    Chen, Ding
    Huang, Liwei
    Zhou, Huihui
    Li, Guoqi
    Tian, Yonghong
    [J]. SCIENCE ADVANCES, 2023, 9 (40):
  • [7] Platform based on open-source cores for industrial applications
    Bolado, M
    Posadas, H
    Castillo, J
    Huerta, P
    Sánchez, P
    Sánchez, C
    Fouren, H
    Blasco, F
    [J]. DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE AND EXHIBITION, VOLS 1 AND 2, PROCEEDINGS, 2004, : 1014 - 1019
  • [8] Open-source machine learning: R meets Weka
    Hornik, Kurt
    Buchta, Christian
    Zeileis, Achim
    [J]. COMPUTATIONAL STATISTICS, 2009, 24 (02) : 225 - 232
  • [9] Open-source machine learning: R meets Weka
    Kurt Hornik
    Christian Buchta
    Achim Zeileis
    [J]. Computational Statistics, 2009, 24 : 225 - 232
  • [10] CircuitNet: an open-source dataset for machine learning applications in electronic design automation (EDA)
    Chai, Zhuomin
    Zhao, Yuxiang
    Lin, Yibo
    Liu, Wei
    Wang, Runsheng
    Huang, Ru
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (12)