Asymptotic Normality of a Kernel Conditional Quantile Estimator Under Strong Mixing Hypothesis and Left-Truncation

被引:3
|
作者
Said, Elias Ould [1 ,2 ]
Yahia, Djabrane [3 ]
机构
[1] Univ Lille Nord France, F-59000 Lille, France
[2] ULCO, LMPA, Ctr Mi Voix, Calais, France
[3] Univ Mohamed Khider, Lab Appl Math, Biskra, Algeria
关键词
Asymptotic normality; Conditional quantile; Kernel estimate; Strong mixing; Truncated data; TIME-SERIES; REPRESENTATIONS; PROBABILITY;
D O I
10.1080/03610926.2010.489171
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the estimation of the conditional quantile when the interest variable is subject to left truncation. Under regularity conditions, it is shown that the kernel estimate of the conditional quantile is asymptotically normally distributed, when the data exhibit some kind of dependence. We use asymptotic normality to construct confidence bands for predictors based on the kernel estimate of the conditional median.
引用
收藏
页码:2605 / 2627
页数:23
相关论文
共 50 条