Bootstrap tests for simple structures in nonparametric time series regression

被引:2
|
作者
Kreiss, Jens-Peter [1 ]
Neumann, Michael H. [2 ]
Yao, Qiwei [3 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Mathemat Stochast, D-38106 Braunschweig, Germany
[2] Univ Jena, Inst Stochast, D-07743 Jena, Germany
[3] London Sch Econ, Dept Stat, London WC2A 2AE, England
基金
英国工程与自然科学研究理事会;
关键词
Absolute regularity; Additive models; Autoregression; Kernel estimation; Local polynomial estimation; Lower order models; Nonparametric regression; Parametric models; Wild bootstrap;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper concerns statistical tests for simple structures such as parametric models, lower order models and additivity in a general nonparametric autoregression setting. We propose to use a modified L-2-distance between the nonparametric estimator of regression function and its counterpart under null hypothesis as our test statistic which delimits the contribution from areas where data are sparse. The asymptotic properties of the test statistic are established, which indicates the test statistic is asymptotically equivalent to a quadratic form of innovations. A regression type resampling scheme (i.e. wild bootstrap) is adapted to estimate the distribution of this quadratic form. Further, we have shown that asymptotically this bootstrap distribution is indeed the distribution of the test statistics under null hypothesis. The proposed methodology has been illustrated by both simulation and application to German stock index data.
引用
收藏
页码:367 / 380
页数:14
相关论文
共 50 条
  • [1] Nonparametric bootstrap tests for neglected nonlinearity in time series regression models
    Lee, TH
    Ullah, A
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2001, 13 (03) : 425 - 451
  • [2] A simple bootstrap test for time series regression models
    Li, DD
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (04) : 513 - 520
  • [3] Simple nonparametric tests for change point detection in time series
    Klyushin, Dmitriy
    [J]. 2022 IEEE 17TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES (CSIT), 2022, : 152 - 155
  • [4] Bootstrap tests for the error distribution in linear and nonparametric regression models
    Neumeyer, Natalie
    Dette, Holger
    Nagel, Eva-Renate
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2006, 48 (02) : 129 - 156
  • [5] Bootstrap tests for nonparametric comparison of regression curves with dependent errors
    J. M. Vilar-Fernández
    J. A. Vilar-Fernández
    W. González-Manteiga
    [J]. TEST, 2007, 16 : 123 - 144
  • [6] Bootstrap tests for nonparametric comparison of regression curves with dependent errors
    Vilar-Fernandez, J. M.
    Vilar-Fernandez, J. A.
    Gonzalez-Manteiga, W.
    [J]. TEST, 2007, 16 (01) : 123 - 144
  • [7] NONPARAMETRIC TIME-SERIES REGRESSION
    TRUONG, YK
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1994, 46 (02) : 279 - 293
  • [8] A Simple Bootstrap Method for Time Series
    Cai, Yuzhi
    Davies, Neville
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2012, 41 (05) : 621 - 631
  • [9] Bootstrap resampling tests for quantized time series
    Leskow, J
    Wronka, C
    [J]. INNOVATIONS IN CLASSIFICATION, DATA SCIENCE, AND INFORMATION SYSTEMS, 2005, : 267 - 274
  • [10] Bootstrap rank tests for trend in time series
    Cabilio, P.
    Zhang, Y.
    Chen, X.
    [J]. ENVIRONMETRICS, 2013, 24 (08) : 537 - 549