A NEW PINCHING THEOREM FOR CLOSED HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN Sn+1

被引:0
|
作者
Xu, Hong-Wei [1 ]
Tian, Ling [1 ]
机构
[1] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Closed hypersurface; Pinching phenomenon; Mean curvature; Scalar curvature; Second fundamental form; MINIMAL HYPERSURFACES; SCALAR CURVATURE; UNIT-SPHERE; RIGIDITY THEOREM; CLIFFORD TORUS; SUBMANIFOLDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the generalized Chern conjecture, and prove that if M is a closed hypersurface in Sn+1 with constant scalar curvature and constant mean curvature, then there exists an explicit positive constant C(n) depending only on n such that if vertical bar H vertical bar < C( n) and S > beta(n, H), then S > beta(n, H) + 3n/7, where beta (n, H) = n + n(3)H(2)/2(n-1) + n(n-2)/2(n-1)root n(2)H(4) + 4(n - 1)H-2.
引用
收藏
页码:611 / 630
页数:20
相关论文
共 50 条