Locking in the incompressible limit for the element-free Galerkin method

被引:39
|
作者
Huerta, A [1 ]
Fernández-Méndez, S [1 ]
机构
[1] Univ Politecn Catalunya, ETS Ingenieros Caminos Canales & Puertos, Dept Matemat Aplicada 3, E-08034 Barcelona, Spain
关键词
locking; volumetric locking; element-free Galerkin; meshless; meshfree;
D O I
10.1002/nme.213
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Volumetric locking (locking in the incompressible limit) for linear elastic isotropic materials is studied in the context of the element-free Galerkin method. The modal analysis developed here shows that the number of non-physical locking modes is independent of the dilation parameter (support of the interpolation functions). Thus increasing the dilation parameter does not suppress locking. Nevertheless, an increase in the dilation parameter does reduce the energy associated with the non-physical locking modes; thus, in part, it alleviates the locking phenomena. This is shown for linear and quadratic orders of consistency. Moreover, the biquadratic order of consistency, as in finite elements, improves the locking behaviour. Although more locking modes are present in the element-free Galerkin method with quadratic consistency than with standard biquadratic finite elements. Finally, numerical examples are shown to validate the modal analysis. In particular, the conclusions of the modal analysis are also confirmed in an elastoplastic example. Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:1361 / 1383
页数:23
相关论文
共 50 条
  • [1] On elimination of shear locking in the element-free Galerkin method
    Kanok-Nukulchai, W
    Barry, W
    Saran-Yasoontorn, K
    Bouillard, PH
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 52 (07) : 705 - 725
  • [2] Locking in the incompressible limit: pseudo-divergence-free element free Galerkin
    Vidal, Y
    Villon, P
    Huerta, A
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2003, 19 (09): : 725 - 735
  • [3] Adaptive element-free Galerkin method applied to the limit analysis of plates
    Le, Canh V.
    Askes, Harm
    Gilbert, Matthew
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (37-40) : 2487 - 2496
  • [4] The coupling of element-free Galerkin method and molecular dynamics for the incompressible flow problems
    Lin Zhang
    Jie Ouyang
    Xiaohua Zhang
    [J]. Microfluidics and Nanofluidics, 2011, 10 : 809 - 820
  • [5] The coupling of element-free Galerkin method and molecular dynamics for the incompressible flow problems
    Zhang, Lin
    Ouyang, Jie
    Zhang, Xiaohua
    [J]. MICROFLUIDICS AND NANOFLUIDICS, 2011, 10 (04) : 809 - 820
  • [6] On Accuracy of the Element-Free Galerkin (EFG) Method in Modeling Incompressible Fluid Flow
    Vlastelica, I.
    Isailovic, V.
    Djukic, T.
    Filipovic, N.
    Kojic, M.
    [J]. JOURNAL OF THE SERBIAN SOCIETY FOR COMPUTATIONAL MECHANICS, 2008, 2 (01) : 90 - 99
  • [7] On a two-level element-free Galerkin method for incompressible fluid flow
    Zhang, Lin
    Jie Ouyang
    Zhang, Xiao-Hua
    [J]. APPLIED NUMERICAL MATHEMATICS, 2009, 59 (08) : 1894 - 1904
  • [8] Consistent element-free Galerkin method
    Duan, Qinglin
    Gao, Xin
    Wang, Bingbing
    Li, Xikui
    Zhang, Hongwu
    Belytschko, Ted
    Shao, Yulong
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 99 (02) : 79 - 101
  • [9] Conditions for locking-free elasto-plastic analyses in the Element-Free Galerkin method
    Askes, H
    de Borst, R
    Heeres, O
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 173 (1-2) : 99 - 109
  • [10] A coupled finite element - Element-free Galerkin method
    Belytschko, T
    Organ, D
    Krongauz, Y
    [J]. COMPUTATIONAL MECHANICS, 1995, 17 (03) : 186 - 195