Multi-modal and multi-scale non-local means method to analyze spectroscopic datasets

被引:6
|
作者
Mevenkamp, Niklas [1 ]
MacArthur, Katherine E. [2 ]
Tileli, Vasiliki [3 ]
Ebert, Philipp [4 ]
Allen, Leslie J. [2 ,5 ]
Berkels, Benjamin [1 ]
Duchamp, Martial [2 ,6 ]
机构
[1] Rhein Westfal TH Aachen, AICES Grad Sch, Aachen, Germany
[2] Forschungszentrum Julich, Ernst Ruska Ctr, Julich, Germany
[3] Ecole Polytech Fed Lausanne, Inst Mat, CH-1015 Lausanne, Switzerland
[4] Forschungszentrum Julich, Peter Grunberg Inst, Julich, Germany
[5] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
[6] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore, Singapore
基金
澳大利亚研究理事会;
关键词
UNCONVENTIONAL METHODS; EELS; ALGORITHM; GAN;
D O I
10.1016/j.ultramic.2019.112877
中图分类号
TH742 [显微镜];
学科分类号
摘要
A multi-modal and multi-scale non-local means (M3S-NLM) method is proposed to extract atomically resolved spectroscopic maps from low signal-to-noise (SNR) datasets recorded with a transmission electron microscope. This method improves upon previously tested denoising techniques as it takes into account the correlation between the dark-field signal recorded simultaneously with the spectroscopic dataset without compromising on the spatial resolution. The M3S-NLM method was applied to electron energy dispersive X-ray and electron-energy-loss spectroscopy (EELS) datasets. We illustrate the retrieval of the atomic scale diffusion process in an Al1-xInxN alloy grown on GaN and the surface oxidation state of perovskite nanocatalysts. The improved SNR of the EELS dataset also allows the retrieval of atomically resolved oxidation maps considering the fine structure absorption edge of LaMnO3 nanoparticles.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] MULTI-SCALE NON-LOCAL MEANS FOR IMAGE DENOISING
    Liu, Xiao-Yan
    Feng, Xiang-Chu
    Han, Yu
    [J]. 2013 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2013, : 231 - 234
  • [2] Multi-scale non-local denoising method in neuroimaging
    Chen, Yiping
    Wang, Cheng
    Wang, Liansheng
    [J]. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2016, 24 (03) : 477 - 487
  • [3] Multi-scale non-local approach for geomaterials
    Voyiadjis, GZ
    Song, CR
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 2002, 29 (2-3) : 121 - 129
  • [4] An efficient method for PET image denoising by combining multi-scale transform and non-local means
    Abhishek Bal
    Minakshi Banerjee
    Rituparna Chaki
    Punit Sharma
    [J]. Multimedia Tools and Applications, 2020, 79 : 29087 - 29120
  • [5] An efficient method for PET image denoising by combining multi-scale transform and non-local means
    Bal, Abhishek
    Banerjee, Minakshi
    Chaki, Rituparna
    Sharma, Punit
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (39-40) : 29087 - 29120
  • [6] A Multi-scale Non-local Means Algorithm for Image De-noising
    Nercessian, Shahan
    Panetta, Karen A.
    Agaian, Sos S.
    [J]. MOBILE MULTIMEDIA/IMAGE PROCESSING, SECURITY, AND APPLICATIONS 2012, 2012, 8406
  • [7] Multi-modal and multi-scale photo collection summarization
    Shen, Xu
    Tian, Xinmei
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (05) : 2527 - 2541
  • [8] Multi-modal and multi-scale photo collection summarization
    Xu Shen
    Xinmei Tian
    [J]. Multimedia Tools and Applications, 2016, 75 : 2527 - 2541
  • [9] Multi-scale, multi-modal neural modeling and simulation
    Ishii, Shin
    Diesmann, Markus
    Doya, Kenji
    [J]. NEURAL NETWORKS, 2011, 24 (09) : 917 - 917
  • [10] Multi-modal and multi-scale retinal imaging with angiography
    Shirazi, Muhammad Faizan
    Andilla, Jordi
    Cunquero, Marina
    Lefaudeux, Nicolas
    De Jesus, Danilo Andrade
    Brea, Luisa Sanchez
    Klein, Stefan
    van Walsum, Theo
    Grieve, Kate
    Paques, Michel
    Torm, Marie Elise Wistrup
    Larsen, Michael
    Loza-Alvarez, Pablo
    Levecq, Xavier
    Chateau, Nicolas
    Pircher, Michael
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)