CONSTRUCTING EXPLICIT ESTIMATORS IN NONLINEAR REGRESSION PROBLEMS

被引:11
|
作者
Linke, Yu Yu [1 ,2 ]
Borisov, I. S. [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk, Russia
基金
俄罗斯基础研究基金会;
关键词
nonlinear regression; explicit estimator; alpha(n)-consistency; asymptotic normality; one-step estimator; initial estimator; INITIAL ESTIMATORS; STEP;
D O I
10.1137/S0040585X97T988897
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the paper, we propose a general approach to constructing explicit consistent estimators for some classes of nonlinear regression models. These estimators can be used as initial ones in one-step estimation procedures capable of delivering, in a sense, optimal estimators in an explicit form.
引用
收藏
页码:22 / 44
页数:23
相关论文
共 50 条