Genome-wide identification and expression profile analysis of the OMT gene family in response to cyst nematodes and multi-abiotic stresses in soybean

被引:4
|
作者
Zhao, Kezhen [1 ]
Yu, Kuanwei [1 ]
Fu, Xue [1 ]
Zhao, Xunchao [1 ]
Xia, Ning [2 ]
Zhan, Yuhang [1 ]
Zhao, Xue [1 ]
Han, Yingpeng [1 ]
机构
[1] Northeast Agr Univ, Chinese Minist Agr, Key Lab Soybean Biol, Northeastern Key Lab Soybean Biol & Genet & Breed, Harbin 150030, Peoples R China
[2] Northeast Agr Univ, Coll Food, Harbin 150030, Peoples R China
来源
CROP & PASTURE SCIENCE | 2022年 / 73卷 / 11期
关键词
abiotic stress; bioinformatics analysis; CCOMT subfamily; expression pattern analysis; lignin; OMT gene family; soybean; soybean cyst nematode; O-METHYLTRANSFERASE; CAFFEOYL-COENZYME; PHENYLPROPANOID METABOLISM; LIGNIN BIOSYNTHESIS; DOWN-REGULATION; ARABIDOPSIS; CCOAOMT; 3-O-METHYLTRANSFERASE; EVOLUTION; BIOINFORMATICS;
D O I
10.1071/CP22002
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Context. Soybean cyst nematode is the most important pest of soybean (Glycine max (L.) Merr.) worldwide, causing serious yield losses. Lignin is a vital component of the cell wall that can provide resistance to cyst nematode. O-Methyltransferase (OMT) is a key enzyme involved in lignin metabolism in the phenylalanine pathway. Aims, In this study, the soybean OMT gene family was systematically identified, and the expression response of GmOMT to abiotic and cyst nematode stresses was investigated. Methods. In total, 67 OMT genes were obtained from the soybean genome through conserved structural domain alignment. GmOMT expression under abiotic stress of soybean was examined based on next-generation RNA sequencing (RNA-Seq). Comprehensive analysis of the genes was conducted, including gene structure, conserved structure, affinity, chromosomal localisation, functional prediction, Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, promoter analysis, and expression pattern analysis. Key results. The 67 GmOMT genes were identified and distributed among the 19 chromosomes. The GmOMT genes were classified into two categories: CCOMT subfamily and COMT subfamily. GmOMT genes from the same family shared similar gene structures and conserved structural domains, which have undergone strong purifying selection during evolution. The presence of multiple cis-responsive elements in the promoters of GmOMT genes suggested that members of the soybean OMT family may be involved in growth and developmental activities and resistance to stress in soybean. Conclusions. GmOMT expression under abiotic stress showed that some of the genes may play a role in abiotic stress. Of them, GmCCOMT3 and GmCCOMT7 were closely associated with lignin synthesis based on both RNA-Seq and quantitative real-time PCR analysis.
引用
收藏
页码:1279 / 1290
页数:12
相关论文
共 50 条
  • [1] Genome-Wide Identification and Characterization of Soybean GmLOR Gene Family and Expression Analysis in Response to Abiotic Stresses
    Fang, Yisheng
    Cao, Dong
    Yang, Hongli
    Guo, Wei
    Ouyang, Wenqi
    Chen, Haifeng
    Shan, Zhihui
    Yang, Zhonglu
    Chen, Shuilian
    Li, Xia
    Chen, Limiao
    Zhou, Xinan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (22)
  • [2] Genome-wide Analysis of Phosphoenolpyruvate Carboxylase Gene Family and Their Response to Abiotic Stresses in Soybean
    Ning Wang
    Xiujuan Zhong
    Yahui Cong
    Tingting Wang
    Songnan Yang
    Yan Li
    Junyi Gai
    Scientific Reports, 6
  • [3] Genome-wide Analysis of Phosphoenolpyruvate Carboxylase Gene Family and Their Response to Abiotic Stresses in Soybean
    Wang, Ning
    Zhong, Xiujuan
    Cong, Yahui
    Wang, Tingting
    Yang, Songnan
    Li, Yan
    Gai, Junyi
    SCIENTIFIC REPORTS, 2016, 6
  • [4] Genome-Wide Identification and Expression Analysis of the Cucumber FKBP Gene Family in Response to Abiotic and Biotic Stresses
    Yang, Dekun
    Li, Yahui
    Zhu, Mengdi
    Cui, Rongjing
    Gao, Jiong
    Shu, Yingjie
    Lu, Xiaomin
    Zhang, Huijun
    Zhang, Kaijing
    GENES, 2023, 14 (11)
  • [5] Genome-Wide Identification and Expression Analysis of Eggplant DIR Gene Family in Response to Biotic and Abiotic Stresses
    Zhang, Kaijing
    Xing, Wujun
    Sheng, Suao
    Yang, Dekun
    Zhen, Fengxian
    Jiang, Haikun
    Yan, Congsheng
    Jia, Li
    HORTICULTURAE, 2022, 8 (08)
  • [6] Genome-wide characterization and expression analysis of the HAK gene family in response to abiotic stresses in Medicago
    Qian Li
    Wenxuan Du
    Xinge Tian
    Wenbo Jiang
    Bo Zhang
    Yuxiang Wang
    Yongzhen Pang
    BMC Genomics, 23
  • [7] Genome-wide characterization and expression analysis of the HAK gene family in response to abiotic stresses in Medicago
    Li, Qian
    Du, Wenxuan
    Tian, Xinge
    Jiang, Wenbo
    Zhang, Bo
    Wang, Yuxiang
    Pang, Yongzhen
    BMC GENOMICS, 2022, 23 (01)
  • [8] Genome-wide identification of WRKY gene family and expression analysis under abiotic stresses in Andrographis paniculata
    Wang, Qichao
    Zeng, Wujing
    Ali, Basharat
    Zhang, Xuemin
    Xu, Ling
    Liang, Zongsuo
    BIOCELL, 2021, 45 (04) : 1107 - 1119
  • [9] Genome-Wide Identification of NAC Gene Family and Expression Analysis under Abiotic Stresses in Avena sativa
    Ling, Lei
    Li, Mingjing
    Chen, Naiyu
    Xie, Xinying
    Han, Zihui
    Ren, Guoling
    Yin, Yajie
    Jiang, Huixin
    GENES, 2023, 14 (06)
  • [10] Genome-wide identification of NAC gene family and expression analysis under abiotic stresses in Salvia miltiorrhiza
    Li, Xin
    Pan, Jianmin
    Islam, Faisal
    Li, Juanjuan
    Hou, Zhuoni
    Yang, Zongqi
    Xu, Ling
    BIOCELL, 2022, 46 (08) : 1947 - 1958