Supervised Method to Build an Atlas Database for Multi-atlas Segmentation-propagation

被引:0
|
作者
Shen, Kaikai [1 ,2 ]
Bourgeat, Pierrick [1 ]
Fripp, Jurgen [1 ]
Meriaudeau, Fabrice [2 ]
Ames, David [3 ]
Ellis, Kathryn A. [3 ,7 ]
Masters, Colin L. [7 ,8 ]
Villemagne, Victor L. [4 ,5 ,6 ,7 ]
Rowe, Christopher C. [8 ]
Salvado, Olivier [1 ]
机构
[1] CSIRO ICT Ctr, Australian E Hlth Res Ctr, Herston, Qld, Australia
[2] Univ Bourgogne, Le Creusot, France
[3] Natl Ageing Res Inst, Parkville, Vic, Australia
[4] Univ Melbourne, Dept Nucl Med, Austin Hosp, Melbourne, Vic, Australia
[5] Univ Melbourne, Ctr PET, Austin Hosp, Melbourne, Vic, Australia
[6] Univ Melbourne, Dept Med, Austin Hosp, Melbourne, Vic, Australia
[7] Univ Melbourne, Mental Hlth Res Inst, Parkville, Vic, Australia
[8] Univ Melbourne, Ctr Neurosci, Parkville, Vic, Australia
关键词
Image segmentation; multi-atlas segmentation-propagation; MRI;
D O I
10.1117/12.844048
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Multi-atlas based segmentation-propagation approaches have been shown to obtain accurate parcelation of brain structures. However, this approach requires a large number of manually delineated atlases, which are often not available. We propose a supervised method to build a population specific atlas database, using the publicly available Internet Brain Segmentation Repository (IBSR). The set of atlases grows iteratively as new atlases are added, so that its segmentation capability may be enhanced in the multi-atlas based approach. Using a dataset of 210 MR images of elderly subjects (170 elderly controls, 40 Alzheimer's disease) from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study, 40 MR images were segmented to build a population specific atlas database for the purpose of multi-atlas segmentation-propagation. The population specific atlases were used to segment the elderly population of 210 MR images, and were evaluated in terms of the agreement among the propagated labels. The agreement was measured by using the entropy H of the probability image produced when fused by voting rule and the partial moment mu(2) of the histogram. Compared with using IBSR atlases, the population specific atlases obtained a higher agreement when dealing with images of elderly subjects.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Atlas Ranking and Selection for Multi-Atlas Segmentation
    Yang, J.
    Beadle, B.
    Garden, A.
    Balter, P.
    Court, L.
    MEDICAL PHYSICS, 2013, 40 (06)
  • [2] Kernel Centered Alignment Supervised Metric for Multi-Atlas Segmentation
    Orbes-Arteaga, Mauricio
    Cardenas-Pena, David
    Alvarez, Mauricio A.
    Orozco, Alvaro A.
    Castellanos-Dominguez, German
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2015, PT I, 2015, 9279 : 658 - 667
  • [3] LOCAL ATLAS SELECTION FOR DISCRETE MULTI-ATLAS SEGMENTATION
    Alchatzidis, Stavros
    Sotiras, Aristeidis
    Paragios, Nikos
    2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015, : 363 - 367
  • [4] ATLAS SELECTION STRATEGY USING LEAST ANGLE REGRESSION IN MULTI-ATLAS SEGMENTATION PROPAGATION
    Shen, Kaikai
    Bourgeat, Pierrick
    Dowson, Nicholas
    Meriaudeau, Fabrice
    Salvado, Olivier
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 1746 - 1749
  • [5] Multi-atlas cardiac PET segmentation
    Kim, Sally Ji Who
    Seo, Seongho
    Kim, Hyeon Sik
    Kim, Dong-Yeon
    Kang, Keon Wook
    Min, Jung-Joon
    Lee, Jae Sung
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2019, 58 : 32 - 39
  • [6] Using Manifold Learning for Atlas Selection in Multi-Atlas Segmentation
    Duc, Albert K. Hoang
    Modat, Marc
    Leung, Kelvin K.
    Cardoso, M. Jorge
    Barnes, Josephine
    Kadir, Timor
    Ourselin, Sebastien
    PLOS ONE, 2013, 8 (08):
  • [7] INTEGRATING SEMI-SUPERVISED LABEL PROPAGATION AND RANDOM FORESTS FOR MULTI-ATLAS BASED HIPPOCAMPUS SEGMENTATION
    Zheng, Qiang
    Fan, Yong
    Weiner, Michael W.
    Aisen, Paul
    Aisen, Paul
    Petersen, Ronald
    Jack, Clifford R., Jr.
    Jagust, William
    Trojanowki, John Q.
    Toga, Arthur W.
    Beckett, Laurel
    Green, Robert C.
    Saykin, Andrew J.
    Morris, John
    Shaw, Leslie M.
    Khachaturian, Zaven
    Sorensen, Greg
    Carrillo, Maria
    Kuller, Lew
    Raichle, Marc
    Paul, Steven
    Davies, Peter
    Fillit, Howard
    Hefti, Franz
    Holtzman, David
    Mesulam, M. Marcel
    Potter, William
    Snyder, Peter
    Lilly, Eli
    Logovinsky, Veronika
    Green, Robert C.
    Montine, Tom
    Petersen, Ronald
    Aisen, Paul
    Jimenez, Gustavo
    Donohue, Michael
    Gessert, Devon
    Harless, Kelly
    Salazar, Jennifer
    Cabrera, Yuliana
    Walter, Sarah
    Hergesheimer, Lindsey
    Beckett, Laurel
    Harvey, Danielle
    Donohue, Michael
    Jack, Clifford R., Jr.
    Bernstein, Matthew
    Fox, Nick
    Thompson, Paul
    Schuff, Norbert
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 154 - 157
  • [8] AUTOMATED BRAIN EXTRACTION USING MULTI-ATLAS PROPAGATION AND SEGMENTATION (MAPS)
    Leung, Kelvin K.
    Barnes, Josephine
    Modat, Marc
    Ridgway, Gerard R.
    Bartlett, Jonathan W.
    Fox, Nick C.
    Ourselin, Sebastien
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 2053 - 2056
  • [9] Weighted Voting Method for Multi-Atlas Segmentation in CT Scans
    Arbisser, A.
    Sharp, G.
    Golland, P.
    Shusharina, N.
    MEDICAL PHYSICS, 2012, 39 (06) : 3675 - 3676
  • [10] Semi-Supervised Sparse Label Fusion for Multi-atlas Based Segmentation
    Guo, Qimiao
    Zhang, Daoqiang
    PATTERN RECOGNITION, 2012, 321 : 471 - 479