Temporal dynamics of soybean sudden death syndrome (SDS) root and foliar disease severity were studied in growth chamber experiments on susceptible plants exposed to different inoculum densities (0, 10(0), 10(1), 10(2), and 10(3) conidia g(-1) soil) of Fusarium virguliforme. The monomolecular model provided the best fit to describe the progress of root and foliar disease severity over time. Disease severity and area under disease progress curve (AUDPC) both increased in response to increasing inoculum density (P < 0.01), particularly for foliar symptoms. Rate of disease progress increased as inoculum densities increased for both root and foliar disease severities. The incubation period for root and foliar disease severity ranged from 9 to 18 and 15 to 25 days, respectively. Significant differences in root rot severity were most easily detected during the early stages of infection, whereas root rot and foliar severities were only weakly correlated when both were assessed simultaneously at later stages of disease development. Root rot severity assessments performed 15 to 20 days after inoculation (DAI) were most highly correlated (r > 0.9, P < 0.01) with foliar disease severity assessments performed 30 to 50 DAI. Root biomass was reduced by up to 67% at the three highest inoculum densities, indicating the aggressiveness that F. virguliforme possesses as a root rot pathogen on soybeans.