Trends and emissions of six perfluorocarbons in the Northern Hemisphere and Southern Hemisphere

被引:11
|
作者
Droste, Elise S. [1 ]
Adcock, Karina E. [1 ]
Ashfold, Matthew J. [2 ]
Chou, Charles [3 ]
Fleming, Zoe [4 ,11 ]
Fraser, Paul J. [5 ]
Gooch, Lauren J. [1 ]
Hind, Andrew J. [1 ]
Langenfelds, Ray L. [5 ]
Elvidge, Emma Leedham [1 ]
Hanif, Norfazrin Mohd [1 ,6 ]
O'Doherty, Simon [7 ]
Oram, David E. [1 ,8 ]
Ou-Yang, Chang-Feng [9 ]
Panagi, Marios [4 ]
Reeves, Claire E. [1 ]
Sturges, William T. [1 ]
Laube, Johannes C. [1 ,10 ]
机构
[1] Univ East Anglia, Ctr Ocean & Atmospher Sci, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England
[2] Univ Nottingham Malaysia, Sch Environm & Geog Sci, Semenyih 43500, Malaysia
[3] Acad Sinica, Res Ctr Environm Changes, Taipei 11529, Taiwan
[4] Univ Leicester, Dept Chem, NCAS, Leicester, Leics, England
[5] CSIRO, Oceans & Atmosphere, Climate Sci Ctr, Aspendale, Vic, Australia
[6] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Earth Sci & Environm, Bangi 43600, Selangor, Malaysia
[7] Univ Bristol, Dept Chem, Bristol, Avon, England
[8] Univ East Anglia, Natl Ctr Atmospher Sci, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England
[9] Natl Cent Univ, Dept Atmospher Sci, Taoyuan, Taiwan
[10] Forschungszentrum Julich GmbHJ, Inst Energy & Climate Res Stratosphere IEK 7, Julich, Germany
[11] Univ Chile, Ctr Climate & Resilience Res CR2, Santiago, Chile
基金
欧洲研究理事会;
关键词
IN-SITU MEASUREMENTS; LONG-TERM TRENDS; STRATOSPHERIC AIR; MIXING RATIOS; MEAN AGE; SF6; CF4; ATMOSPHERE; FIRN; C2F6;
D O I
10.5194/acp-20-4787-2020
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Perfluorocarbons (PFCs) are potent greenhouse gases with global warming potentials up to several thousand times greater than CO2 on a 100-year time horizon. The lack of any significant sinks for PFCs means that they have long atmospheric lifetimes of the order of thousands of years. Anthropogenic production is thought to be the only source for most PFCs. Here we report an update on the global atmospheric abundances of the following PFCs, most of which have for the first time been analytically separated according to their isomers: coctafluorobutane (c-C4F8), n-decafluorobutane (n-C4F10), ndodecafluoropentane (n-C5F12), n-tetradecafluorohexane (nC(6)F(14)), and n-hexadecafluoroheptane (n-C7F16). Additionally, we report the first data set on the atmospheric mixing ratios of perfluoro-2-methylpentane (i-C6F14). The existence and significance of PFC isomers have not been reported before, due to the analytical challenges of separating them. The time series spans a period from 1978 to the present. Several data sets are used to investigate temporal and spatial trends of these PFCs: time series of air samples collected at Cape Grim, Australia, from 1978 to the start of 2018; a time series of air samples collected between July 2015 and April 2017 at Tacolneston, UK; and intensive campaign-based sampling collections from Taiwan. Although the remote "background" Southern Hemispheric Cape Grim time series indicates that recent growth rates of most of these PFCs are lower than in the 1990s, we continue to see significantly increasing mixing ratios that are between 6% and 27% higher by the end of 2017 compared to abundances measured in 2010. Air samples from Tacolneston show a positive offset in PFC mixing ratios compared to the Southern Hemisphere baseline. The highest mixing ratios and variability are seen in air samples from Taiwan, which is therefore likely situated much closer to PFC sources, confirming predominantly Northern Hemispheric emissions for most PFCs. Even though these PFCs occur in the atmosphere at levels of parts per trillion molar or less, their total cumulative global emissions translate into 833 million metric tonnes of CO2 equivalent by the end of 2017, 23% of which has been emitted since 2010. Almost two-thirds of the CO2 equivalent emissions within the last decade are attributable to c-C4F8, which currently also has the highest emission rates that continue to grow. Sources of all PFCs covered in this work remain poorly constrained and reported emissions in global databases do not account for the abundances found in the atmosphere.
引用
收藏
页码:4787 / 4807
页数:21
相关论文
共 50 条
  • [2] The breeding seasons of Southern Hemisphere birds in the Northern Hemisphere.
    Baker, JR
    Ranson, RM
    [J]. PROCEEDINGS OF THE ZOOLOGICAL SOCIETY OF LONDON SERIES A-GENERAL AND EXPERIMENTAL, 1938, 108 : 101 - U36
  • [3] TRANSFER OF NORTHERN HEMISPHERE FALL-OUT TO SOUTHERN HEMISPHERE
    WOODWARD, RN
    [J]. NATURE, 1966, 210 (5042) : 1244 - &
  • [4] Ozone laminae: Comparison of the Southern and Northern Hemisphere, and tentative explanation of trends
    Krizan, Peter
    Lastovicka, Jan
    [J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2006, 68 (17) : 1962 - 1972
  • [5] Are reptile and amphibian species younger in the Northern Hemisphere than in the Southern Hemisphere?
    Dubey, S.
    Shine, R.
    [J]. JOURNAL OF EVOLUTIONARY BIOLOGY, 2012, 25 (01) : 220 - 226
  • [6] Croll revisited: Why is the northern hemisphere warmer than the southern hemisphere?
    Sarah M. Kang
    Richard Seager
    Dargan M. W. Frierson
    Xiaojuan Liu
    [J]. Climate Dynamics, 2015, 44 : 1457 - 1472
  • [7] Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation
    He, Feng
    Shakun, Jeremy D.
    Clark, Peter U.
    Carlson, Anders E.
    Liu, Zhengyu
    Otto-Bliesner, Bette L.
    Kutzbach, John E.
    [J]. NATURE, 2013, 494 (7435) : 81 - 85
  • [8] Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation
    Feng He
    Jeremy D. Shakun
    Peter U. Clark
    Anders E. Carlson
    Zhengyu Liu
    Bette L. Otto-Bliesner
    John E. Kutzbach
    [J]. Nature, 2013, 494 : 81 - 85
  • [9] DISTRIBUTION OF AURORAS IN SOUTHERN HEMISPHERE .3. COMPARISON WITH NORTHERN HEMISPHERE
    BOND, FR
    JACKA, F
    [J]. AUSTRALIAN JOURNAL OF PHYSICS, 1963, 16 (04): : 514 - &
  • [10] Forcing of Northern Hemisphere climate trends
    Schneider, EK
    Bengtsson, L
    Hu, ZZ
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2003, 60 (12) : 1504 - 1521