On complete intersections containing a linear subspace

被引:1
|
作者
Bastianelli, Francesco [1 ]
Ciliberto, Ciro [2 ]
Flamini, Flaminio [2 ]
Supino, Paola [3 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Matemat, Via Edoardo Orabona 4, I-70125 Bad, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, Viale Ric Sci 1, I-00133 Rome, Italy
[3] Univ Roma Tre, Dipartimento Matemat & Fis, Largo SL Murialdo 1, I-00146 Rome, Italy
关键词
Linear subspaces; Complete intersections; Fano schemes; Enumerative results; Rationality results; PLANES;
D O I
10.1007/s10711-019-00452-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the Fano scheme F-k(Y) parameterizing k-dimensional linear subspaces contained in a complete intersection Y subset of P-m of multi-degree d = (d(1),..., d(s)). It is known that, if t := Sigma(s)(i=1) ((k) (di+k)) - (k + 1)(m - k) <= 0 and Pi (s)(i=1) d(i) > 2, for Y a general complete intersection as above, then F-k (Y) has dimension -t. In this paper we consider the case t > 0. Then the locus Wd, k of all complete intersections as above containing a k-dimensional linear subspace is irreducible and turns out to have codimension t in the parameter space of all complete intersections with the given multi-degree. Moreover, we prove that for general [Y]. Wd, k the scheme Fk (Y) is zero-dimensional of length one. This implies that Wd, k is rational.
引用
收藏
页码:231 / 239
页数:9
相关论文
共 50 条
  • [1] On complete intersections containing a linear subspace
    Francesco Bastianelli
    Ciro Ciliberto
    Flaminio Flamini
    Paola Supino
    [J]. Geometriae Dedicata, 2020, 204 : 231 - 239
  • [2] ON LINEAR COMPLETE-INTERSECTIONS
    VASCONCELOS, WV
    [J]. JOURNAL OF ALGEBRA, 1987, 111 (02) : 306 - 315
  • [3] Generalized complete intersections with linear resolutions
    Munetaka Okudaira
    Yukihide Takayama
    [J]. Archiv der Mathematik, 2008, 90 : 385 - 394
  • [4] Generalized complete intersections with linear resolutions
    Okudaira, Munetaka
    Takayama, Yukihide
    [J]. ARCHIV DER MATHEMATIK, 2008, 90 (05) : 385 - 394
  • [5] A NOTE ON *COMPLETE INTERSECTIONS GENERATED BY LINEAR FORMS
    La Barbiera, M.
    [J]. MISKOLC MATHEMATICAL NOTES, 2014, 15 (01) : 19 - 25
  • [6] Are complete intersections complete intersections?
    Heitmann, Raymond C.
    Jorgensen, David A.
    [J]. JOURNAL OF ALGEBRA, 2012, 371 : 276 - 299
  • [7] On Fano schemes of linear spaces of general complete intersections
    Bastianelli, Francesco
    Ciliberto, Ciro
    Flamini, Flaminio
    Supino, Paola
    [J]. ARCHIV DER MATHEMATIK, 2020, 115 (06) : 639 - 645
  • [8] On Fano schemes of linear spaces of general complete intersections
    Francesco Bastianelli
    Ciro Ciliberto
    Flaminio Flamini
    Paola Supino
    [J]. Archiv der Mathematik, 2020, 115 : 639 - 645
  • [9] On the Possible Dimensions of Subspace Intersections
    Lebedinskaya, N. A.
    Lebedinskii, D. M.
    [J]. VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2016, 49 (02) : 115 - 118
  • [10] On complete intersections
    Forstneric, F
    [J]. ANNALES DE L INSTITUT FOURIER, 2001, 51 (02) : 497 - +