A REVIEW OF A RIESZ BASIS PROPERTY FOR INDEFINITE STURM-LIOUVILLE PROBLEMS

被引:9
|
作者
Binding, Paul [1 ]
Fleige, Andreas [1 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
来源
OPERATORS AND MATRICES | 2011年 / 5卷 / 04期
关键词
indefinite Sturm-Liouville problem; Riesz basis; HELP inequality; TRANSPORT; EIGENFUNCTIONS; LITTLEWOOD; OPERATORS; RANGE; HARDY; BEALS;
D O I
10.7153/oam-05-52
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an indefinite weight function r on [-1, 1] with xr(x) > 0 we consider connections between a Riesz basis property of the indefinite Sturm-Liouville eigenvalue problem -y '' = lambda ry, y(-1) = y(1) = 0 and various different conditions, for example HELP-type inequalities (integral(1)(0)vertical bar h'vertical bar(2)1/rdx)(2) <= k(integral(1)(0)vertical bar h vertical bar(2)dx) (integral(1)(0)vertical bar h'/r)' vertical bar(2)dx) for certain classes of functions h on [0, 1]. We show that for so-called strongly odd dominated functions r (including odd r) these problems are equivalent. This allows us to apply known results from the theory of one problem to the others.
引用
收藏
页码:735 / 755
页数:21
相关论文
共 50 条